Contents
Foreword
Introduction

1 Scope

2 Normative References

3 Definitions, notations, and conventions

3.1 Definitions
3.2 Notations
3.3 Conventions
4 Concepts
4.1 Period Data Type
4.2 Time-lines
4.3 Aggregates
4.4 Valid-time Tables
4.5 Schema Specification
4.6 Restructuring
4.7 Temporal Selection
4.8 Temporal Projection
49 Update
410 Cursors
4.11 System Tables.

Modified Language Syntax

Section 5 Lexical Elements
6.1 Section 5.2 <token> and <separator>
6.2 Section 5.3 <literal>

Section 6 Scalar Expressions

7.1 Section 6.1 <data type>

7.2 Section 6.3 <table reference>

7.3 Section 6.5 <set function specification> . .

7.4 Section 6.8 <datetime value function> . . .

7.5 Section 6.10 <cast specification>

7.6 Section 6.11 <value expression>

7.7 Section 6.14 <datetime value expression> .

7.8 Section 6.77 <period value expression> . .

7.9 Section 6.77 <period value function> . . .
7.10 Section 6.77 <temporal element value expression>
7.11 Section 6.77 <temporal element value function>
7.12 Section 6.77 <instant set value expression>
7.13 Section 6.77 <instant set value function> .

8 Section 7 Query expressions

8.1 7.1 <row value constuctor>
8.2 Section 7.3 <table expression>
8.3 Section 7.9 <query specification>

vii

11
11
11

13
13
13
14
15
15
16
16
16
17
18
18
18
19

i

10

11

12

Section 8 Predicates

9.1 Section 8.1 <predicate>
9.2 Section 8.2 <comparison predicate>
9.3 Section 8.7 <quantified comparison predicate>
9.4 Section 8.11 <overlaps predicate>o

Section 11 Schema definition and manipulation

10.1 Section 11.3 <table definition>
10.2 Section 11.5 <default clause>
10.3 Section 11.10 <alter table statement>

Section 13 Data manipulation

11.1 Section 13.3 <fetch statement>
11.2 Section 13.5 <select statement: single row>
11.3 Section 13.7 <delete statement: searched>
11.4 Section 13.10 <update statement: searched>

Section 21 Information Schema and Definition Schema

12.1 Section 21.3.8 TABLES base table
12.2 Section 22 Status Codes

23
23
23
23
23

25
25
25
26

27
27
27
27
28

(ISO Working Draft) SQL Valid Time Support (SQLTemporal)

List of Tables

1 Permitted Arithmetic Expressions and Results.
2 Permitted Set of Comparison Operators,

11

v

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardizatin. National bodies that are mem-
bers of ISO or IEC participate in the development of International Standards through technical commi-
tees established by the respective organization to deal with particular fields of technical activity. ISO
and TEC technical commitees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of infroamtion technology, ISO and TEC have estrablished a joint technical committee,
ISO/TEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated
to national bodies for voting. Publication as an International Standard requires approval by at least 75%
of the national bodies casting a vote.

International Standard ISO/TEC 9075, Part V, was prepared by Joint Technical Committee ISO/TEC
JTC 1, Information technology.

ISO/TEC 9075 consists of the following parts, under the general title Information technology—
Database languages—SQL:

— Part 1: Fundamentals and Basic Language

— Part W: SQL Global Transaction Management
— Part X: Call Level Interface

— Part Y: Persistent SQL Modules

— Part Z: Host Language Bindings.

vi

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) vil

Introduction

The organization of this International Standard is as follows:
1) Clause 1, “Scope”, specifies the scope of this part of this International Standard.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this part
of this International Standard, constitute provisions of this part of this International Standard.

3) Clause 3, “Definitions, notations, and conventions”, defines the notations and convensions used in
this part of this International Standard.

4) Clause 4, “Concepts”, presents concepts used in the support of valid time.

5) Clause 5, “Modified Language Syntax”, provides syntactic additions to SQL-92 to support valid
time.

In the text of this International Standard, Clauses begin a new odd-numbered page. Any resulting blank
space 1s not significant.

viil

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 1

Information Technology—Database Languages—SQL Part V—
SQL Temporal Support (SQL/Temporal)
1. Scope

This Part of International Standard ISO/TEC 9075 defines the facilities by which a conforming
SQL-implementation can support temporal data.

Note: The framework for this International Standard is described by the Reference Model of Data Management
(ISO/IEC 10032:1993).

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 3

2 Normative References

The following standards contain provisions that, through reference in this document, constitute provisions
of this Part of this International Standard. At the time of publication, the editions indicated were valid.
All standards are subject to revision, and parties to agreements based on this International Standard
are encouraged to investigate the possibility of applying the most recent editions of the standards listed
below. Members of IEC qand ISO maintain registers of currently valid International Standards.

— ISO/TEC 9075:1992, Information Technology—Database Languages—SQL.

The language additions of this Part of this International Standard are fully upwardly compatible with
SQL-92. Support for valid time has been added.

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 5

3 Definitions, notations, and conventions

This document adheres to the terminology defined in ISO/TEC 9075:1992.

3.1 Definitions

a) valid time: The valid time of a fact is the time when the fact is true in the modeled reality.

3.2 Notations

The syntax notation used in this Part of this International Standard is an extended version of BNF
(“Backus Normal Form” or “Backus Naur Form”).

This version of BNF is fully described in Part 1 of this International Standard.

The syntax description is a modification of the SQL-92 syntax description, and follows all conventions
used therein.

3.3 Conventions

The convensions used 1n this Part of this International Standard are identical to those described 1n Part
1 of this International Standard.

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 7

4 Concepts

Here we briefly outline the major concepts behind the language extension. Much more discussion may
be found in a separate commentary.

4.1 Period Data Type

SQL-92’s datetime and interval data types are augmented with a period data time, of specifiable precision.
New operators on periods are defined.

4.2 Time-lines

This proposal adds the valid time line. The valid time of a fact is the time that it was valid in reality.

4.3 Aggregates

The conventional SQL-92 aggregates are extended to apply over temporal domains. They are also
extended to return time-varying values.

4.4 Valid-time Tables

The snapshot tables currently supported by SQL-92 continue to be available. State tables may also be
specified. In such tables, each tuple is timestamped with a temporal element, which is a union of periods.
As an example, the Employee table with attributes Name, Salary and Manager could contain the tuple
(Tony, 10000, LeeAnn). The temporal element timestamp would record the maximal (noncontiguous)
periods in which Tony made $10000 and had LeeAnn as his manager. Information about other values of
Tony’s salary or other managers would be stored in other tuples. The timestamp is implicitly associated
with each tuple; it is not another column in the table. The precision of the timestamps within the
temporal element can be specified.

Temporal elements are closed under union, difference, and intersection. Timestamping tuples with
temporal elements is conceptually appealing and can support multiple representational data models.
Dependency theory can be extended to apply in full to this temporal data model.

Fvent tables may also be specified. In such tables, each tuple is timestamped with an instant set.
As an example, a Hired table with attributes Name and Position could contain the tuple (LeeAnn,
Manager). The instant set timestamp would record the instant(s) when LeeAnn was hired as a Manager.
Information about other values of her positions would be stored in other tuples. In this case, the
timestamp 1s implicitly associated with each tuple.

In summary, there are three kinds of tables: snapshot (no temporal support beyond time columns),
valid-time state tables (consisting of sets of tuples timestamped with valid-time elements), and valid-time
event tables (timestamped with valid-time instant sets).

4.5 Schema Specification

The CREATE TABLE and ALTER statements are extended to allow specification of the valid-time aspects of
temporal tables. The scale and precision of the valid timestamps can also be specified and later altered.

4.6 Restructuring

The FROM clause is extended to allow tables to be restructured so that the temporal elements associated
with tuples with identical values on a subset of the columns are coalesced. For example, to determine
when Tony made a Salary of $10000, independent of who his manager was, the Employee table could be
restructured on the Name and Salary columns. The timestamp of this restructured tuple would specify
the periods when Tony made $10000, information which might be gathered from several underlying tuples
specifying different managers.

Similarly, to determine when Tony had LeeAnn as his manager, independent of his salary, the table
would be restructured on the Name and Manager columns. To determine when Tony was an employee,
independent of how much he made or who his manager was, the table could be restructured on only the
Name column.

Restructuring can also involve partitioning of the temporal element or instant set into its constituent
maximal periods or instants, respectively. Many queries refer to a continuous property, in which maximal
periods are relevant.

4.7 Temporal Selection

The valid-time timestamp of a table may participate in predicates in the WHERE clause via VALID()
applied to the table (or correlation variable) name. The operators have been extended to take temporal
elements and instant sets as arguments.

4.8 Temporal Projection

Conventional snapshot tables, as well as valid-time tables, can be derived from underlying snapshot or
valid-time tables. An optional VALID or VALID INTERSECT clause is used to specify the timestamp of the
derived tuple.

4.9 Update

The update statements have been extended in a manner similar to the SELECT statement, to specify the
temporal extent of the update.

4.10 Cursors

Cursors have been extended to optionally return the valid time of the retrieved tuple.

4.11 System Tables

The TABLES base table has been extended to include information on the valid time component (if present)
of a table.

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 9

5 Modified Language Syntax

The organization of this section follows that of the SQL-92 document. The syntax is listed under
corresponding section numbers in the SQL-92 document. All new or modified syntax rules are marked
with a bullet (“e”) on the left side of the production.

Where appropriate, we provide disambiguating rules to describe additional syntactic and semantic
restrictions. We assume that the reader is familiar with the SQL-92 proposal, and that a copy of the
proposal is available for reference.

10

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 11

6 Section 5 Lexical Elements

6.1 Section 5.2 <token> and <separator>

The production for the non-terminal <delimiter token> is augmented.

<delimiter token> ::=
. <period string>

The production for the non-terminal <reserved word> is modified to add 9 reserved words. To
conserve space, we do not copy the existing 227 reserved word definitions from the SQL-92 document.

<reserved word> ::=
CONTAINS

EVENT

INSTANT

MEETS

PERIOD |PRECEDES
SNAPSHOT| STATE
VALID

6.2 Section 5.3 <literal>
The production for the non-terminal <general literal> is augmented.

<general literal> ::=
. <period literal>

<period literal> ::=
. PERIOD <period string>

<period string> ::=
. <quote> <left bracket> <datetime literal> <space> <minus sign>
<space> <datetime literal> <right bracket>

Additional syntax rules:
1. A <period string> is any sequence of characters not containing a single <quote>.

2. Let A and B be valid <datetime string>s, representing datetimes C' and D. If the <period string>
is identical to a ‘[’ followed by A followed by ¢ - ’ followed by B followed by ‘]’, then the value of
the <period string> is the period from C' to D.

3. The data type of a <period literal>> is PERIOD.
Additional general rules:

1. Period literals are interpreted as follows. The beginning granule of the period is the first granule
contained in the period, and the ending granule of the period is the last granule contained in the
period.

2. If a datetime, period, or interval literal 1s incorrectly specified then an exception condition is raised:
data exception—invalid time value literal.

12

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 13

7 Section 6 Scalar Expressions

7.1 Section 6.1 <data type>

The production for the non-terminal <data type> adds one new type.

<data type> =
. <period type>

<period type> =
. PERIOD [<period qualifier>] [WITH TIME ZONE]

<period qualifier> ::=
. <left paren> <timestamp precision> <right paren>

Additional general rules:

1. The delimiting datetimes of a period shall have the same precision and scale.

7.2 Sectlon 6.3 <table reference>

The production for the non-terminal <table reference> is replaced with the following. The first com-
ponent can be more complex than a single <table name>, and multiple space-separated <correlation
name>>s are permitted.

<table reference> ::=

o <table source> [[AS] <corr> { <corr> }...]

o <derived table> [AS] <corr> { <corr> }...
<joined table>

<corr> 1=
. <correlation>
° | <joined table>

The following productions are added. The first allows table references to be defined in terms of other
table references. The rest serve to define <correlation modifier>.

<table source> ::=

. <table name> <correlation modifier>

. <correlation name> <correlation modifier>

<correlation> ::=

. <correlation name> [<left paren> <derived column list> <right paren>]

<correlation modifier> ::=
. [<left paren> <coalescing columns> <right paren>]
[<left paren> <partitioning unit> <right paren>]

<coalescing columns> ::=
. <column name> [{<comma> <column name> }]
. <asterisk>

14

<partitioning unit> ::=

INSTANT
PERIOD

Additional syntax rules:

1.

6.
7.

<coalescing columns> of <asterisk>> imply all the attributes of the <table name> or <correlation
name>.

If the <coalescing attributes> are not present, then <asterisk> is assumed.
If a <correlation modifier> is applied to a <table source>, then a <correlation> is required.

If the <correlation modifier> is applied to a <correlation name>, then the attributes are drawn
from the table upon which the <correlation name> is based, and augment those attributes asso-
ciated with the <correlation name>>. The latter attributes can be mentioned in this <correlation
modifier>, but is not required.

If <partitioning unit>> is not specified, then no partitioning is assumed.
Partitioning on INSTANT is only permitted for event tables.

Partitioning on PERIOD is only permitted for state tables.

Additional general rules:

1.

2.
3.

7.3

Let C'M be the <correlation modifier>. Let C'N be a <column name> contained in C'M, and C'
be the column.

Case:

e If C'M is associated with a <table name>, then let T" be that table name. The table identified
by T 1s the ultimate table of C'N.

e If C'N is associated with a <correlation name>>, then let D be that <correlation name>. The
ultmate table of C'N is the ultimate table of D.

C' must be a column of its ultimate table.

Only those <column name>s indicated as <coalescing columns> are accessible via the <correlation
name>.

Section 6.5 <set function specification>

Additional syntax rules:

1.
2.
3.

Let DT be the data type of the <value expression>.
If SUM is specified, DT shall not be an instant or a period.

If AVG is specified, DT shall not be a period, an event set, or a temporal element.

Additional general rules:

1.

If MIN, MAX, SUM, or AVG is specified and T is a timestamp, then

Case:

(a) Tf MIN is present, then use PRECEDE to determine the minimum timestamp, except in the case
that A is an interval, in which case return the interval with the minimal number of granules.

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 15

(b) If MAX is present, then use not PRECEDE to determine the maximum timestamp, except in
the case that A is an interval, in which case return the interval with the maximal number of
granules.

(c) If SUM is present, if the type of A is an interval, then return an interval equal in length to the
sum of the granules in T. Otherwise, the type of A must be a temporal element or event set,
and the result 1s the result of set union of the elements of T.

(d) If AVG is present, if the type of A is an interval, then return an interval equal in length to
the average number of granules in T. Otherwise, the type of A must be an instant. Pick any
origin O. Compute the average of the distance from O to each instant in T, and return the
instant representing the distance from O to this average.

2. If SUM is specified, 7" is INTERVAL and the sum is not within the range of data type then an exception
condition 1s raised: data exception—time value out of range.

7.4 Section 6.8 <datetime value function>

Expressions evaluating to or taking as a parameter periods or temporal expressions are added.

<datetime value function> ::=

. BEGIN <left paren> <period value expression> <right paren>

. END <left paren> <period value expression> <right paren>

. FIRST <left paren> <datetime value expression> <comma>> <datetime value expression>
<right paren>

. LAST <left paren> <datetime value expression> <comma> <datetime value expression>

<right paren>
FIRST <left paren> <instant set value expression> <right paren>
LAST <left paren> <instant set value expression> <right paren>
VALID <left paren> { <table name> | <correlation name> } <right paren>

Additional general rules:

1. FIRST (LAST) extracts the first (last) instant from the instant set.

2. Use of VALID must be on valid event tables which are partitioned.

7.5 Section 6.10 <cast specification>

Casting between data types is extended to include the temporal types. No syntactic changes or additions
are required to do this.

Additional syntax rules:

1. The table showing allowable data conversions is augmented to add the PERIOD (P), temporal
element (TE) and instant set (IS) data types.

16

<data type> of TD

<data type>of SD | EN | AN | VC | FC | VB | FB | D | T |TS|YM DT |P | TE]|IS
EN Y Y Y Y N N | N|N| N M M N| N |N
AN Y Y Y Y N N | N|N| N N N |[N| N |N
C Y Y M| M| Y Y |[Y|Y Y Y Y |[Y| Y |Y
B N N Y Y Y Y I IN|N|N N N |[N| N |N
D N N Y Y N N|Y|N|Y N N IY|Y|Y
T N N Y Y N N |N|Y|Y N N IY|Y|Y
TS N N Y Y N N|lY|Y|Y N N IY|Y|Y
YM M Y Y Y N N | N|N| N Y N |[N| N |N
DT M Y Y Y N N | N|N| N N Y [N| N | N
P N N Y Y N N | N|N| N M M |Y| Y |N
TE N N N N N N | N|N| N N N INJ'Y |Y
IS N N N N N N | N|N| N N N INJ'Y |Y

2. If SDis D, T, or TS and 7D i1s P then the conversion results in a period of duration one granule.
3. If SDis C and TD is P then the conversion is first done to the T data type.

4. If SD1s C, D, T, or TS and TD 1s TE then the conversion is first done to the P type.

5. If 5D is P and TD i1s TE, then the conversion is into a temporal element containing one period.
6. If SDis C, T, TS, or P and TD is IS then the conversion is first done to the TE type.

7. If 5D 1s TE and TD is IS then the conversion is done by applying FIRST to each period in the set.

7.6 Section 6.11 <value expression>

The production for the non-terminal <value expression> 1s augmented to include expressions evaluating
to periods, to temporal elements, and to instant sets.

<value expression> ::=

. <period value expression>
. <temporal element value expression>
. <instant set value expression>

7.7 Section 6.14 <datetime value expression>

Table 1 has been added, and includes periods.

7.8 Section 6.77 <period value expression>

This 1s a new section.

<period value expression> ::=

. <period primary>

. <interval value expression> <plus sign> <period value expression>

. <period value expression> {<plus sign> | <minus sign>} <interval value expression>

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 17

|Opemnd1 Operator Operand 2 Yields |

- interval interval
interval + interval interval
interval - interval interval
datetime + interval datetime
datetime - interval datetime
interval + datetime datetime
datetime - datetime interval
interval * numeric interval
numeric * interval interval
interval / numeric interval
interval / interval numeric
winterval + pertod pertod

pertod + winterval pertod
pertod - winterval pertod

Table 1: Permitted Arithmetic Expressions and Results.

<period primary> ::=

<period literal>
<column reference>
<scalar subquery>
<case expression>
<period value function>
<cast specification>

Additional syntax rules:

1. The data type of a <period value expression>> is PERIOD.

2. Table 1 lists the arithmetic expressions involving time that are permitted.

Additional general rules:

1. If a temporal arithmetic operation yields a PERIOD value that is out of range then an exception

condition 1s raised: data exception—time value out of range.

7.9 Section 6.77 <period value function>

This 1s a new section.

<period value function> ::=

VALID <left paren> { <table name> | <correlation name> } <right paren>

PERIOD <left paren> <datetime value expression> <comma> <datetime value expression>
<right paren>

INTERSECT <left paren> <period value expression> <comma>>
<period value expression> <right paren>

FIRST <left paren> <temporal element value expression> <right paren>

LAST <left paren> <temporal element value expression> <right paren>

18

Additional general rules:

1. Use of VALID is permitted only on valid time state tables that are partitioned, and denotes a
maximal period in the timestamp of the underlying tuple.

2. FIRST (LAST) extracts the first (last) maximal period from the temporal element.

7.10 Section 6.7?7 <temporal element value expression>

The following are new nonterminals introduced into the language.

<temporal element value expression> ::=

. <temporal element value term>

. <temporal element value expression> { <plus sign> | <minus sign> }
<temporal element value term>

<temporal element value term> ::=
. <temporal element value factor>

<temporal element value factor> ::=
. <temporal element value primary>

<temporal element value primary> ::=
. <temporal element value function>

Additional general rules:

1. “+7 (=) on temporal elements is set union (difference).

7.11 Section 6.?7 <temporal element value function>

A new nonterminal, <temporal element value function>, is added.

<temporal element value function> ::=

. VALID <left paren> { <table name> | <correlation name> } <right paren>

. INTERSECT <left paren> <temporal element value expression> <comma>
<temporal element value expression> <right paren>

Additional general rules:

1. Use of VALID denotes the temporal element timestamping of the underlying tuple, which must be
associated with a valid time state table that has not been partitioned.

2. Intersection of temporal elements is set intersection.

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 19

7.12 Section 6.7?7 <instant set value expression>

The following are new nonterminals introduced into the language.

<instant set value expression> ::=
. <instant set value primary>
. <instant set value expression> { <minus> | <plus> } <instant set value primary>

<instant set value primary> ::=
. <instant set value function>

Additional general rules:

1. “+7 (=) on instant sets is set union (difference).

7.13 Section 6.?7? <instant set value function>

A new nonterminal, <instant set value function>> is added.
<instant set value function> ::=
. VALID <left paren> { <table name> | <correlation name> } <right paren>

. INTERSECT <left paren> <instant set value expression> <comma>
<instant set value expression> <right paren>

Additional general rules:

1. Use of VALID denotes the instant set timestamping of the underlying tuple, which must be associated
with a valid-time event table that has not been partitioned.

20

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 21

8 Section 7 Query expressions

8.1 7.1 <row value constuctor>
A tuple can now include a valid time.
<row value constructor> ::=

<row value constructor element>

. <left paren> <row value constructor list> <right paren> [<valid value>]
<row subquery>

<valid value> ::=
. VALID { <element value expression> | <interval value expression>
| <event value expression> | <event set value expression> }

8.2 Section 7.3 <table expression>

The production for the non-terminal <table expression> is replaced with the following, adding one
clause.

<table expression> ::=
o [<valid clause>]
<from clause>
[<where clause>]
[<group by clause>]
[<having clause>]

The following production is added.
<valid clause> ::=
. { VALID | VALID INTERSECT } { <temporal element value expression>

<period value expression> | <datetime value expression>>
<instant set value expression> }

Additional general rules:
1. VALID INTERSECT 7 is equivalent to

VALID INTERSECT(7, INTERSECT(C:, ..., INTERSECT(C\,-1, Cp)))

The correlation variables are listed in order of increasing precision (finer to coarser).
where Cj; are the correlation variables (or table names) mentioned in the SELECT clause.

2. The default VALID clause is

VALID INTERSECT PERIOD °’[0001/01/01 - 9999/12/31]".

3. If the VALID clause specifies a period or instant value, the values from the other value-equivalent
tuples are gathered into a temporal element or instant set, respectively.

22

8.3 Section 7.9 <query specification>

The production is replaced with the following, adding one optional reserved word.

<query specification> ::=
. SELECT [<set quantifier>> | [SNAPSHOT | <select list>> <table expression>

Additional general rules:

1. SNAPSHOT specifies that the resulting table will be a snapshot table. In this case, the <table
expression> should not include a <valid clause>.

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 23

9 Section 8 Predicates

9.1 Section 8.1 <predicate>

The production for the non-terminal <predicate> is replaced with the following.

<predicate> ::=

<comparison predicate>
<between predicate>
<in predicate>

<like predicate>

<null predicate>
<quantified comparison predicate>
<exists predicate>
<unique predicate>
<match predicate>
<precedes predicate>
<meets predicate>
<overlaps predicate>
<contains predicate>

9.2 Section 8.2 <comparison predicate>

No new syntax rules are required, but additional disambiguating rules are required for interval compar-
ison.

1. The <less than operator>, <greater than operator>, and <equals operator> are valid for interval
comparison.

9.3 Section 8.7 <quantified comparison predicate>

No additional productions are required. The following syntax rules are added.
Additional syntax rules:

1. Let 77 be the type of <value expression>.
2. Let T5 be the type of <row value expression>.
3. Ifeither T} or 75 1s DATE, TIME, TIMESTAMP, PERIOD or INTERVAL then 73 and 7% must be comparable
as defined in Table 2.
9.4 Section 8.11 <overlaps predicate>

The following productions are added for the new comparison operators. (The production for the OVERLAPS
predicate is extended.) The applicable types are broadened to include temporal elements.

<overlaps predicate> ::=
<row value constructor 1> OVERLAPS <row value constructor 2>
. <row value expression 1> OVERLAPS <row value expression 2>

<precedes predicate> ::=
. <row value expression 1> PRECEDES <row value expression 2>

24

<meets predicate> ::=
<row value expression 1> MEETS <row value expression 2>

<contains predicate> ::=
<row value expression 1> CONTAINS <row value expression 2>

This grammar is overly permissive in that it generates semantically illegal expressions.
however, consistent with the grammar originally provided in the SQL-92 standard for datetime value
comparison. Expressions violating type constraints will be detected during semantic analysis.

Additional syntax rules:

1.
2.

Let 77 be the type of <row value expression 1>.

Let 75 be the type of <row value expression 2>.

T, and 75 must be either PERIOD or datetime.

T1 and T5 shall be comparable as defined in Table 2.

Any comparison involving the PERIOD or datetime data types not listed in Table 2 is disallowed.

| Operand 1 Operator Operand 2
interval = interval
interval < interval
interval > interval

datetime/period/element = datetime/period/element
datetime/period/element PRECEDES datetime/period/element
datetime/period/element OVERLAPS datetime/period/element
datetime/period/element CONTAINS datetime/period/element
datetime/period/element MEETS datetime/period/element

Table 2: Permitted Set of Comparison Operators

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 25

10

10.1

Section 11 Schema definition and manipulation

Section 11.3 <table definition>

The production for the non-terminal <table definition> is augmented with an additional, optional clause.

<table definition> ::=

CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE <table name>
<table elements>
[<temporal definition>]
[ON COMMIT { DELETE | PRESERVE }] ROWS]

One production 1s added.

<temporal definition> ::=

AS { VALID [STATE | EVENT] } [<timestamp precision>]

Additional general rules:

1. Case:

(a) If VALID is not specified, the table is a snapshot table.

(b) If AS VALID STATE is specified, then the tuples are timestamped with valid-time elements that
are sets of non-contiguous periods. The precision and scale of the periods can be specified.

(c) If AS VALID EVENT is specified, then the tuples are timestamped with valid-time instant sets.
The precision and scale of the instants can be specified.

10.2 Section 11.5 <default clause>

The production for the non-terminal <default clause> is changed to the following.

<default clause> ::=

<literal>

<datetime value function>
<interval value function>
<period value function>
USER

SYSTEM USER

NULL

Additional syntax rules:

1.
2.

Let 7" be the type of the column being initialized.

If T is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL then USER and SYSTEM USER may not be
specified.

If T is DATE, TIME or TIMESTAMP then either a <literal> representing a <datetime literal> or a
<datetime value function> may be specified.

If 7" 1s PERIOD then either a <literal> representing a <period literal> or a <period value function>
may be specified.

If T is INTERVAL then either a <literal> representing an <interval literal> or an <interval value
function> may be specified.

26

10.3 Section 11.10 <alter table statement>

The <alter table statement> 1s augmented with the following alternatives.

<alter table action> ::=

<add valid definition>
<drop valid definition>
<replace valid definition>

The following productions are added.

<add valid definition> ::=

ADD [VALID] { STATE | EVENT } [<timestamp precision>]

<drop valid definition> ::=

DROP VALID

<replace valid definition> ::

REPLACE [VALID] [{ STATE | EVENT }] [<timestamp precision>]

Additional syntax rules:

1.
2.
3.
4.

Let T be the table identified in the containing <alter table statement>.
For the <add valid definition>, T shall be a snapshot or transaction-time table.
For the <drop valid definition>, T shall be a valid-time table.

For the <replace valid definition>, T shall be a valid-time table.

Additional general rules:

1.

For the <drop valid definition>, if T is a state table, it is converted to a snapshot table with
contents

SELECT SNAPSHOT # FROM T WHERE T' OVERLAPS CURRENT _TIMESTAMP
If T is an event table, it is converted to a snapshot table with contents
SELECT SNAPSHOT * FROM T

If T was an state table and <valid definition> specifies period, then only the precision or scale of
T’s valid-time timestamps is altered. The temporal element of each tuple of T' is converted to the
new precision and scale. If the scale in increased, the additional fractional digits are set to zero.

If T" was an state table and <valid definition>> specifies event, then the timestamp of each tuple in
T 1s converted from a set of periods to a set of instants, equivalently,

SELECT * VALID BEGIN(T) FROM T(PERIOD)

If T was an event table and <valid definition>> specifies event, then only the precision or scale of T’s
valid-time timestamps is altered. The instants in the timestamp of each tuple of T are converted
to the new precision and scale. If the scale in increased, the additional fractional digits are set to
zero.

If T was an event table and <valid definition> specifies period, then the timestamp of each tuple
in T 1s converted from a set of instants to a set of periods, equivalently,

SELECT * VALID PERIOD(T, T) FROM T(EVENT)

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 27

11 Section 13 Data manipulation

11.1 Section 13.3 <fetch statement>

<fetch statement> ::=
FETCH [[<fetch orientation>] FROM | <cursor name> [INTO <fetch target list>]
. [INTO VALID [PERIOD | <fetch target list>]

Additional syntax rules:

1. At least one of INTO <fetch target list>> and INTO VALID [PERIOD | <fetch target list> must be
present in a fetch statement.

Additional general rules:

1. When a <fetch target list> follows INTO VALID PERIOD, it must contain precisely a single <target
specification>. When a <fetch target list> follows INTO VALID (without PERIOD), it must contain
exactly two <target specification>s.

2. When a <fetch target list> follows INTO VALID PERIOD, it must contain precisely a single <target
specification>. This 1s only allowed with a state table is being evaluated by the SELECT statement.
When a <fetch target list> follows INTO VALID (without PERIOD), it must contain exactly two
<target specification>s if a state table is being evaluated by the SELECT statement, and exactly
one <target specfication> is an event table is being evaluated.

11.2 Section 13.5 <select statement: single row>
The production is replaced with the following, adding one optional reserved word.

<select statement: single row> ::=
. SELECT [<set quantifier> | [SNAPSHOT] <select list>
INTO <select target list>
<table expression>

Additional general rules:

1. SNAPSHOT specifies that the resulting table will be a snapshot table. In this case, the <table
expression> should not include a <valid clause>.

11.3 Section 13.7 <delete statement: searched>

The production for the non-terminal <delete statement: searched>> is augmented with an additional,
optional clause. This clause references the non-terminal <valid clause> defined for the SELECT state-
ment.

<delete statement: searched> ::=
DELETE FROM <table name>
[WHERE <search condition>]
o [<valid value>]

Additional general rules:

1. If T is a valid-time table, and the <valid value> is omitted, then the default valid value specified
in the <table definition> is assumed. If there was no default value specified, then the interval

PERIOD(TIMESTAMP CURRENT_TIMESTAMP, NOBIND(TIMESTAMP ’now’))

1s assumed.

28

11.4 Section 13.10 <update statement: searched>

<update statement: searched> ::=
UPDATE <table name>
SET <set clause list>
o [<valid value>]
[WHERE <search condition>]

(ISO Working Draft) SQL Valid Time Support (SQLTemporal)

12 Section 21 Information Schema and Definition Schema

12.1 Section 21.3.8 TABLES base table

ALTER TABLE TABLES ADD COLUMN
VALID TIME CHARACTER DATA
CONSTRAINT VALID_TIME_CHECK
CHECK (VALID.TIME IN (’STATE’, ’EVENT’, ’NONE’))

29

30

(ISO Working Draft) SQL Valid Time Support (SQLTemporal) 31

12.2 Section 22 Status Codes
The exception codes associated with the SQLSTATE parameter are modified to support the period data

type
We show only the changed exceptions.
Condition Class | Subcondition Subclass
data exception 22 time value out of range 008
invalid time value literal 007

