
ANSI X3H2-95-485

ISO/IEC JTC1/SC21/WG3 DBL LHR-096

I S O

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

December 29, 1995

Subject: SQL/Temporal

Status: Change Proposal

Title: Adding Valid Time | Part A

Version: 3

Source: ANSI Expert's Contribution

Authors: Richard T. Snodgrass (Department of Computer Science, University of Arizona),
Michael H. B�ohlen (Department of Mathematics and Computer Science, Aalborg
University, Denmark), Christian S. Jensen (also at Aalborg) and Andreas Steiner
(Department of Computer Science, ETH Z�urich, Switzerland)



2 DBL:LHR-096 and X3H2-95-485

Abstract: This change proposal speci�es the addition of temporal tables into SQL/Temporal,
and explains how to use these facilities to migrate smoothly from a conventional
relational system to a temporal system. Initially, important requirements to a tem-
poral system that may facilitate a smooth transition are motivated and discussed.
The proposal then describes the language additions necessary to add temporal sup-
port to SQL3 while ful�lling these requirements. The constructs of the language are
divided into four levels, with each level adding increased temporal functionality to
its predecessor. The proposal formally de�nes the semantics of the query language
by providing a denotational semantics mapping to well-de�ned algebraic expres-
sions. Several alternatives for implementing the language constructs are listed. A
prototype system implementing these constructs on top of a conventional DBMS is
publicly available.

References

[1] B�ohlen, M. H. and Marti R.On the Completeness of Temporal Database Query Languages, in Proceedings
of the First International Conference on Temporal Logic. Ed. D. M. Gabbay, Ohlbach H. J.. Lecture
Notes in Arti�cial Intelligence 827. Springer-Verlag, July 1994, pp. 283-300.

[2] B�ohlen, M. H. Valid-Time Integrity Constraints, Aalborg University, October, 1995, 21 pages.

[3] B�ohlen, M. H., C. S. Jensen and R. T. Snodgrass. Evaluating the Completeness of TSQL2, in Proceedings
of the VLDB International Workshop on Temporal Databases. Ed. J. Cli�ord and A. Tuzhilin. VLDB.
Springer Verlag, Sep. 1995.

[4] Cli�ord, J., A. Croker and A. Tuzhilin. On Completeness of Historical Relational Query Languages.
ACM Transactions on Database Systems, 19, No. 1, Mar. 1994, pp. 64{116.

[5] Jackson, M. A. System Development. Prentice-Hall International Series in Computer Science. Prentice-
Hall International, Inc., 1983.

[6] Jensen, C. S. and R. Snodgrass. Temporal Specialization and Generalization. IEEE Transactions on
Knowledge and Data Engineering, 6, No. 6 (1994), pp. 954{974.

[7] Melton, J. (ed.) SQL/Foundation. October, 1995. (ISO/IEC JTC 1/SC 21/WG 3 DBL-LHR-002.)

[8] Melton, J. (ed.) SQL/Temporal. October, 1995. (ISO/IEC JTC 1/SC 21/WG 3 DBL-LHR-009.)

[9] Schueler, B. Update Reconsidered, in Architecture and Models in Data Base Management Systems. Ed.
G. M. Nijssen. North Holland Publishing Co., 1977.

[10] Snodgrass, R. T., S. Gomez and E. McKenzie. Aggregates in the Temporal Query Language TQuel. IEEE
Transactions on Knowledge and Data Engineering, 5, Oct. 1993, pp. 826{842.

[11] Snodgrass, R. T. and H. Kucera. Rationale for Temporal Support in SQL3. 1994. (ISO/IEC
JTC1/SC21/WG3 DBL SOU-177, SQL/MM SOU-02.)

[12] Snodgrass, R. T., K. Kulkarni, H. Kucera and N. Mattos. Proposal for a new SQL Part|Temporal.
1994. (ISO/IEC JTC1/SC21 WG3 DBL RIO-75, X3H2-94-481.)

[13] Snodgrass, R. T. (editor) The Temporal Query Language TSQL2. Kluwer Academic Pub., 1995.

[14] Steiner, A. and M. H. B�ohlen. The TimeDB Temporal Database
Prototype, September, 1995. Available at ftp://www.iesd.auc.dk/general/DBS/tdb/TimeCenter or
at ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz.

[15] Tsichritzis, D.C. and F.H. Lochovsky. Data Models. Software Series. Prentice-Hall, 1982.

[16] Yourdon, E. Managing the System Life Cycle. Yourdon Press, 1982.



DBL:LHR-096 and X3H2-95-485 3

1 Introduction

This change proposal introduces additions to SQL/Temporal to add temporal support to SQL3. We outline
a four level approach for the integration of time. We motivate and discuss each level in turn, and we de�ne
the syntactic extensions that correspond to level. We will see that the extensions are fairly minimal. Each
level is described via a quick tour consisting of a set of examples. These examples have been tested in a
prototype which is publicly available [14].

The proposed language constructs ensure temporal upward compatibility and snapshot reducibility, im-
portant properties that will be discussed in detail in Section 2.

Research on temporal databases has identi�ed several properties crucial to temporal database systems,
including support for valid-time, transaction time, temporal aggregates, indeterminacy, time granularity,
user-de�ned calendars, vacuuming, and schema versioning. This document is the second in a series that will
propose constructs for SQL/Temporal drawn from the consensus temporal query language TSQL2 [13]. The
�rst [12], which was accepted in July, 1995, concerned the PERIOD data type.

The present change proposal addresses support for valid-time, speci�cally temporal upward compatibility
and snapshot reducibility support. The next proposal will add support for non-sequenced queries and
modi�cations. Future proposals will concern time granularities, transaction time, temporal indeterminacy,
and other features relevant to SQL3 that are fully supported in TSQL2. However, it is important that each
proposal be comprehensive in its motivation of the additions, its presentation of the syntactic changes, and
its speci�cation of the semantics of the new constructs. For this reason, each change proposal should be
separately considered and evaluated by the SQL3 standards committees.

While the language additions proposed here are modest, the productivity gains made available to the
application programmer are signi�cant. In particular, we will show how adding a single reserved word
will convert any conventional (termed snapshot) query into a temporal query that extracts the history of
the aspect being queried. This permits users to express rather complex temporal queries easily, by �rst
formulating them as snapshot queries, then adding the reserved word. This parallel will be exploited in the
semantics, permitting any SQL3 query to be rendered temporal. Moreover the syntactic modi�cation not only
holds for queries but also for view de�nitions, insert statements, delete statements, update statements, cursor
declarations, table constraint de�nitions, column constraint de�nitions, and the de�nition of assertions.

We now return to the important question of migrating legacy databases. In the next section, we formulate
several requirements of SQL/Temporal to allow graceful migration of applications from conventional to
temporal databases.

2 Migration

The potential users of temporal database technology are enterprises with applications1 that need to manage
potentially large amounts of time-varying information. These include �nancial applications such as portfolio

management, accounting, and banking; record-keeping applications, including personnel, medical records,
and inventory; and travel applications such as airline, train, and hotel reservations and schedule management.
It is most realistic to assume that these enterprises are already managing time-varying data and that the
temporal applications are already in place and working. Indeed, the uninterrupted functioning of applications
is likely to be of vital importance.

For example, companies usually have applications that manage the personnel records of their employees.
These applications manage large quantities of time-varying data, and they may bene�t substantially from
built-in temporal support in the DBMS [11]. Temporal queries that are shorter and more easily formulated
are among the potential bene�ts. This leads to improved productivity, correctness, and maintainability.

This section explores the problems that may occur when migrating database applications from an existing
to a new DBMS, and it formulates a number of requirements to the new DBMS that must be satis�ed in
order to avoid di�erent potential problems when migrating. Formal de�nitions of these requirements may
be found in Appendix A.

1
We use \database application" nonrestrictively, for denoting any software system that uses a DBMS as a standard

component.



4 DBL:LHR-096 and X3H2-95-485

We assume that the DBMS interface is captured in a data model and thus talk about the migration of
application code using an existing data model to using a new data model. As the existing model is given,
the focus is on formulating requirements to the new data model.

Much of the section is applicable to the transition from any data model to a new data model. However,
we have found it convenient to assume that the transition is from a non-temporal to a temporal data model.
Further, we generally assume that the transition is from the SQL3 standard to SQL/Temporal.

2.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition of application code from an existing data
model to a new data model is to guarantee that all application code without modi�cation will work with the
new system exactly with the same functionality as with the existing system. The next two de�nitions are
intended to capture what is needed for that to be possible.

We adopt the convention that a data model consists of two components, namely a set of data structures
and a language for querying the data structures [15]. For example, the central data structure of the relational
model is the table, and the central, user-level query language is SQL.

We de�ne a data model to be syntactically upward compatible with another data model if all the data
structures and legal query expressions of the latter model are contained in the former model. For a data
model to be upward compatible with another data model, we add the requirement that all queries expressible
in the existing model must evaluate to the same results in both models. Syntactic upward compatibility
implies that all existing databases and query expressions in the old system are also legal in the new system.
The second condition guarantees that all existing queries compute the same results in the new system as in
the old system. Thus, the bulk of legacy application code is not a�ected by the transition to a new system.

To explore the relationship between SQL/Temporal and SQL3, we employ a series of �gures that demon-
strate increasing query and update functionality. In Figure 1, a conventional table is denoted with a rectangle.
The current state of this table is the rectangle in the upper-right corner. Whenever a modi�cation is made
to this table, the previous state is discarded; hence, at any time only the current state is available. The
discarded prior states are denoted with dashed rectangles; the right-pointing arrows denote the modi�cation
that took the table from one state to the next state.

q

...

Time

Figure 1: Level 1 evaluates an SQL3 query over a snapshot table and returns a snapshot table

When a query q is applied to the current state of a table, a resulting table is computed, shown as the
rectangle in the bottom right corner. While this �gure only concerns queries over single tables, the extension
to queries over multiple tables is clear.

Upward compatibility states that (1) all instances of tables in SQL3 are instances of tables in SQL/Temporal,
(2) all SQL3 modi�cations to tables in SQL3 result in the same tables when the modi�cations are evaluated
according to SQL/Temporal semantics, and (3) all SQL3 queries result in the same tables when the queries
are evaluated according to SQL/Temporal.



DBL:LHR-096 and X3H2-95-485 5

By requiring that SQL/Temporal is a strict superset (i.e., only adding constructs and semantics), it is
relatively easy to ensure that SQL/Temporal is upward compatible with SQL3.

Throughout, we provide examples of the various levels. In Section 3, we show these examples expressed
in SQL/Temporal.

Example 1: A company wishes to computerize its personnel records, so it creates two tables, an employee
table and a monthly salary table. Every employee must have a salary. These tables are populated. A high
salary view identi�es those employees with a monthly salary greater than $3500. Then employee Therese is
given a 10% raise. Since the salary table is a snapshot table, Therese's previous salary is lost. These schema
changes and queries can be easily expressed in SQL3. ut

2.2 Temporal Upward Compatibility

The above minimal requirements are essential to ensure a smooth transition to a new temporal data model,
but they do not address all aspects of migration. Speci�cally, assume that an existing data model has been
replaced with a new temporal model. No application code has been modi�ed, and all tables are thus snapshot
tables. Now, an existing or new application needs support for the temporal dimension of the data in one
or more of the existing tables. This is best achieved by changing the snapshot table to become a temporal
table (e.g., by using the ALTER statement of SQL/Temporal).

Note that it is undesirable to be forced to change the application code that accesses the snapshot table
that is replaced by a temporal table. We formulate a requirement that states that the existing applications
on snapshot tables will continue to work with no changes in functionality when the tables they access are
altered to become temporal tables. Speci�cally, temporal upward compatibility requires that each query will
return the same result on an associated snapshot database as on the temporal counterpart of the database.
Further, this property is not a�ected by modi�cations to those temporal tables.

Temporal upward compatibility is illustrated in Figure 2. When temporal support is added to a table,
the history is preserved, and modi�cations over time are retained. In this �gure, the state to the far left was
the current state when the table was made temporal. All subsequent modi�cations, denoted by the arrows,
result in states that are retained, and thus are solid rectangles. Temporal upward compatibility ensures that
the states will have identical contents to those states resulting from modi�cations of the snapshot table.

q

...

Time

Figure 2: Level 2 evaluates an SQL3 query over a temporal table and returns a snapshot table

The query q is an SQL3 query. Due to temporal upward compatibility the semantics of this query must
not change if it is applied to a temporal table. Hence, the query only applies to the current state, and a
snapshot table results.

Example 2: We make both the employee and salary tables temporal. This means that all informa-



6 DBL:LHR-096 and X3H2-95-485

tion currently in the tables is valid from today on. We add an employee. This modi�cation to the two
tables, consisting of two SQL3 INSERT statements, respects temporal upward compatibility. That means
it is valid from now on. Queries and views on these newly-temporal tables work exactly as before. The
SQL3 query to list where high-salaried employees live returns the current information. Constraints and as-
sertions also work exactly as before, applying to the current state and checked on database modi�cation. ut

It is instructive to consider temporal upward compatibility in more detail. When designing larger infor-
mation systems, two general approaches have been advocated. In the �rst approach, the system design is
based on the function of the enterprise that the system is intended for (the \Yourdon" approach [16]); in the
second, the design is based on the structure of the reality that the system is about (the \Jackson" approach
[5]). It has been argued that the latter approach is superior because structure may remain stable when the
function changes while the opposite is generally not possible. Thus, a more stable system design, needing
less maintenance, is achieved when adopting the second design principle. This suggests that the data needs
of an enterprise are relatively stable and only change when the actual business of the enterprise changes.

Enterprises currently use non-temporal database systems for database management, but that does not
mean that enterprises manage only non-temporal data. Indeed, temporal databases are currently being man-
aged in a wide range of applications, including, e.g., academic, accounting, budgeting, �nancial, insurance,
inventory, legal, medical, payroll, planning, reservation, and scienti�c applications. Temporal data may be
accommodated by non-temporal database systems in several ways. For example, a pair of explicit time
attributes may encode a valid-time interval associated with a tuple.

Temporal database systems o�er increased user-friendliness and productivity, as well as better perfor-
mance, when managing temporal data. The typical situation, when replacing a non-temporal system with a
temporal system, is one where the enterprise is not changing its business, but wants the extra support o�ered
by the temporal system for managing its temporal data. Thus, it is atypical for an enterprise to suddenly
desire to record temporal information where it previously recorded only snapshot information. Such a change
would be motivated by a change in the business.

The typical situation is rather more complicated. The non-temporal database system is likely to already
manage temporal data, which is encoded using snapshot tables, in an ad hoc manner. When adopting
the new system, upward compatibility guarantees that it is not necessary to change the database schema
or application programs. However, without changes, the bene�ts of the added temporal support are also
limited. Only when de�ning new tables or modifying existing applications, can the new temporal support
be exploited. The enterprise then gradually bene�ts from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant, for several reasons. First,
it provides an appealing intuitive notion of a temporal table: the semantics of queries and modi�cation are
retained from snapshot tables; the only di�erence is that intermediate states are also retained. Second, in
those cases where the snapshot table contained no historical information, temporal upward compatibility
a�ords a natural means of migrating to temporal support. In such cases, not a single line of the application
need be changed when the table is altered to be temporal. Third, snapshot tables that do contain temporal
information and that have been converted to temporal tables can still be queried and modi�ed by conventional
SQL3 statements in a consistent manner.

2.3 Syntactically Similar Snapshot-Reducible Temporal Extensions

The requirements covered so far have been aimed at protecting investments in legacy code and at ensuring
uninterrupted operation of existing applications when achieving substantially increased temporal support
by migrating to a temporal data model. Upward compatibility guarantees that (non-historical) legacy
application code will continue to work without change when migrating, and temporal upward compatibility
in addition allows legacy code to coexist with new temporal applications following the migration.

The requirement in this section aims at protecting the investments in programmer training and at ensuring
continued e�cient, cost-e�ective application development upon migration to a temporal model. This is
achieved by exploiting the fact that programmers are likely to be comfortable with the non-temporal query
language, e.g., SQL3.

Snapshot reducibility states that SQL/Temporal must o�er, for each query in SQL3, a temporal query
that \naturally" generalizes this query, in a speci�c technical sense. In addition, we require that the



DBL:LHR-096 and X3H2-95-485 7

SQL/Temporal query be syntactically similar to the SQL3 query that it generalizes.
With this requirement satis�ed, SQL3-like SQL/Temporal queries on temporal tables have semantics that

are easily (\naturally") understood in terms of the semantics of the SQL3 queries on snapshot tables. The
familiarity of the similar syntax and the corresponding, naturally extended semantics makes it possible for
programmers to immediately and easily write a wide range of temporal queries, with little need for expensive
training.

Figure 3 illustrates this property. We have already seen that an SQL3 query q on a temporal table applies
the standard SQL3 semantics on the current state of that table, resulting in a snapshot table. This �gure
illustrates a new query, q0, which is an SQL/Temporal query. Query q0 is applied to the temporal table (the
sequence of states across the top of the �gure), and results in a temporal table, which is the sequence of
states across the bottom.

q

...

=

...

q’ q q q q

Figure 3: Level 3 evaluates an SQL/Temporal query over a temporal table and returns a temporal table

We would like the semantics of q0 to be easily understood by the SQL3 programmer. Satisfying snapshot
reducibility along with the syntactical similarity requirement makes this possible. Speci�cally, the meaning
of q0 is precisely that of applying SQL3 query q on each state of the temporal input table, producing a state
of the output table for each such application. And when q0 also closely resembles q syntactically, temporal
queries are easily formulated and understood. To generate query q0, one needs only prepend the reserved
word VALID to query q.

This requirement ensures that the temporal model is a user-friendly (i.e., minor) extension of the snapshot
model.

Example 3: We ask for the history of the monthly salaries paid to employees. Asking that question for

the current state (i.e., what is the salary for each employee) is easy in SQL3; let us call this query q. To ask
for the history, we simply prepend the keyword VALID to q to generate the SQL/Temporal query. Snapshot
reducibility allows us to do this for all SQL3 queries. So let us try a harder one: list the history of those
employees for which no one makes a higher salary and lives in a di�erent city. Again the problem reduces
to expressing the SQL3 query for the current state. We then prepend VALID to get the history. Snapshot
reducibility also works for views, integrity constraints and assertions. ut

These concepts also apply to snapshot-reducible modi�cations, illustrated in Figure 4. A valid-time mod-
i�cation destructively modi�es states as illustrated by the curved arrows. As with queries, the modi�cation
is applied on a state-by-state basis. Hence, the semantics of the SQL/Temporal modi�cation is a natural
extension of the SQL modi�cation statement that it generalizes.

Example 4: It turns out that a particular employee never worked for the company. That employee is
deleted from the database. Note that if we use an SQL3 DELETE statement, temporal upward compatibility
requires deleting the information only from the current (and future) states. By prepending the reserved word
VALID to the DELETE statement, we can remove that employee from every state of the table.

Many people mispell the town Tucson as \Tuscon", perhaps because the name derives from an Indian



8 DBL:LHR-096 and X3H2-95-485

u

...

=u’ u u u u

Figure 4: Level 3 also evaluates an SQL/Temporal modi�cation on a temporal table

word in a language no longer spoken. To modify the current state to correct this spelling requires a simple
SQL UPDATE statement; let's call this statement u. To correct the spelling in all states, both past and pos-
sibly future, we simply prepend the reserved word VALID to u. ut

2.4 Non-Sequenced Queries and Modi�cations

In a snapshot reducible query, the information in a particular state of the resulting temporal table is derived
solely from information in the state at that same time of the source table(s). However, there are many
reasonable queries that require other states to be examined. Such queries are illustrated in Figure 5, in
which each state of the resulting table requires information from possibly all states of the source table.

q

...

......

Figure 5: Level 4 evaluates a non-sequenced SQL/Temporal query over a temporal table and returns a
temporal table

In this �gure, two temporal tables are shown, one consisting of the states across the top of the �gure, and
the other, the result of the query, consisting of the states across the bottom of the �gure. A single query q

performs the possibly complex computation, with the information usage illustrated by the downward pointing
arrows. Whenever the computation of a single state of the result table may utilize information from a state
at a di�erent time, that query is non-sequenced. Such queries are more complex than snapshot reducible
queries, and they require new constructs in the query language.

Example 5: The query, \Who was given salary raises?", requires locating two consecutive times, in which
the salary of the latter time was greater than the salary of the former time, for the same employee. Hence,
it is a non-sequenced query and requires additional SQL/Temporal constructs. ut

As the focus of this document is on temporal upward compatibility and snapshot reducibility, non-
sequenced queries are accorded their own change proposal, which will be the next in the series.

The concept of non-sequenced queries naturally generalizes to modi�cations. Non-sequenced modi�cations
destructively change states, with information retrieved from possibly all states of the original table. In
Figure 6, each state of the temporal table is possibly modi�ed, using information from possibly all states of
the table before the modi�cation. Non-sequenced modi�cations include future modi�cations.



DBL:LHR-096 and X3H2-95-485 9

u:

...

Figure 6: Level 4 also evaluates a non-sequenced SQL/Temporal modi�cation on a temporal table

Example 6: We wish to give employees a 5% raise if they have never had a raise before. This is not a
temporally upward compatible modi�cation, because the modi�cation of the current state uses information
in the past. For the same reason, it is not a snapshot reducible update. So we must use a slightly more
involved SQL/Temporal UPDATE statement. ut

Non-sequenced modi�cations are clearly more complex than sequenced modi�cations. They require new
constructs in the query language. Again, we defer discussion of these constructs and their detailed semantics
to the next change proposal.

2.5 Summary

In this section, we have formulated three important requirements that SQL/Temporal should satisfy to ensure
a smooth transition of legacy application code from SQL3's non-temporal data model to SQL/Temporal's
data model. We review each in turn.

Upward compatibility and temporal upward compatibility guarantee that legacy application code needs
no modi�cation when migrating and that new temporal applications may coexist with existing applications.
They are thus aimed at protecting investments in legacy application code.

The requirement that the temporal data model be a snapshot-reducible extension of the existing data
model guarantees that a core subset of the temporal data model maximally builds on the existing data
model and makes the temporal query language easy to use for programmers familiar with the existing query
language. The requirement thus helps protect investments in programmer training. It also turns out that
this property makes the semantics of temporal tables straight-forward to specify, as shown in Section 4, and
enables a wide range of implementation alternatives, some of which are listed in Section 5.2.

These requirements induce four levels of temporal functionality, to be de�ned in SQL/Temporal.

Level 1 This lowest level captures the minimum functionality necessary for the temporal query language

to satisfy upward compatibility with SQL3. Thus, there is support for legacy SQL3 statements, but
there are no temporal tables and no temporal queries. Put di�erently, the functionality at this level is
identical to that of SQL3.

Level 2 This level adds to the previous level solely by allowing for the presence of temporal tables. The
temporal upward compatibility requirement is applicable to this subset of SQL/Temporal. This level
adds no new syntax for queries or modi�cations|only queries and modi�cations with SQL3 syntax are
possible.

Level 3 The functionality of Level 2 is enhanced with the possibility of giving snapshot-reducibility-consistent
temporal functionality to queries, views, constraints, assertions, and modi�cations on temporal tables.
This level of functionality is expected to provide adequate support for many applications. Starting at
this level, temporal queries exist, so SQL/Temporal must be a snapshot-reducibility-consistent exten-
sion of SQL3.

Level 4 Finally, the full temporal functionality normally associated with a temporal language is added,
speci�cally, non-sequenced temporal queries, assertions, constraints, views, and modi�cations. These
additions include temporal queries and modi�cations that have no syntactic counterpart in SQL3.



10 DBL:LHR-096 and X3H2-95-485

3 Supporting Temporal Tables in SQL3

This section informally introduces the new constructs of SQL/Temporal. These constructs are a slightly
improved and extended version of those in the consensus temporal query language TSQL2 [13]. The im-
provements concern guaranteeing the properties listed in Section 2, to support easy migration of legacy SQL3
application code [3]. The extensions concern views, assertions, and constraints (speci�cally temporal upward
compatible and snapshot reducible extensions) that were not considered in the original TSQL2 design.

The presentation is divided into four levels, where each successive level adds temporal functionality. The
levels correspond to those discussed informally in the previous section. Throughout, the functionality is
exempli�ed with input to and corresponding output from a prototype system [14]. The reader may �nd it
instructive to execute the sample statements on the prototype. In the examples, executable statements are
displayed in typewriter style on a line of their own starting with the prompt \> ".

3.1 Level 1: Upward Compatibility

Level 1 ensures upward compatibility (see Figure 1), i.e., it guarantees that legacy SQL3 statements evaluated
over snapshot databases return the result dictated by SQL3.

3.1.1 SQL3 Extensions

Obviously there are no syntactic extensions to SQL3 at this level.

3.1.2 A Quick Tour

The following statements are executed on January 1, 1995.

> CREATE TABLE employee(ename VARCHAR(12), eno INTEGER PRIMARY KEY,

street VARCHAR(22), city VARCHAR(10), birthday DATE);

> CREATE TABLE salary(eno INTEGER REFERENCES employee(eno), amount INTEGER);

> CREATE ASSERTION emp_has_sal CHECK

(NOT EXISTS ( SELECT *

FROM employee AS e

WHERE NOT EXISTS ( SELECT *

FROM salary AS s

WHERE e.eno = s.eno)));

> INSERT INTO employee

VALUES ('Therese', 5873, 'Bahnhofstrasse 121', 'Zurich', DATE '1961-03-21');

> INSERT INTO employee

VALUES ('Franziska', 6542, 'Rennweg 683', 'Zurich', DATE '1963-07-04');

> INSERT INTO salary VALUES (6542, 3200);

> INSERT INTO salary VALUES (5873, 3300);

> CREATE VIEW high_salary AS SELECT * FROM salary WHERE amount > 3500;

> UPDATE salary s

SET (amount) = (SELECT 1.1 * s.amount

FROM salary s, employee e

WHERE e.ename = 'Therese'

AND s.eno = e.eno)

WHERE s.eno = (SELECT e.eno FROM employee e WHERE e.ename = 'Therese');

> COMMIT;



DBL:LHR-096 and X3H2-95-485 11

3.2 Level 2: Temporal Upward Compatibility

Level 2 ensures temporal upward compatibility as depicted in Figure 2. Temporal upward compatibility is
straightforward for queries. They are evaluated over the current state of a valid-time database.

3.2.1 SQL3 Extensions

The create table statement is extended to de�ne temporal tables. Speci�cally, this statement can be followed
by the clause \AS VALID <datetime �eld>", e.g., \AS VALID DAY". This speci�es that the table is a temporal
table, with states indexed by particular days. The alter table statement is extended to permit valid-time
support to be added to a snapshot table or dropped from a temporal table. The speci�cs may be found in
Appendix F.

A temporal table is conceptually a sequence of states indexed with valid-time granules at the speci�ed
granularity. This is the view of a temporal table adopted in temporal upward compatibility and snapshot
reducibility.

At a more speci�c logical level, a temporal table is also a collection of rows timestamped with periods.
This level is more speci�c because the same sequence of states may be represented by di�erent collections of
timestamped tuples. Since queries manipulate tuples with timestamps, telling what single state or sequence
of states should result from a query does not de�ne the query, but only restricts the possible de�nitions of
the query. Put di�erently, temporal upward compatibility and snapshot reducibility are required properties,
not de�nitions.

Indeed, our de�nition of the semantics of the addition to SQL/Temporal being proposed satis�es temporal
upward compatibility and snapshot reducibility.

3.2.2 A Quick Tour

The following statements are executed on February 1, 1995.

> ALTER TABLE salary ADD VALID DAY;

> ALTER TABLE employee ADD VALID DAY;

The following statements are typed in the next day (February 2, 1995).

> INSERT INTO employee

VALUES('Lilian', 3463, '46 Speedway', 'Tuscon', DATE '1970-03-09');

> INSERT INTO salary VALUES(3463, 3400);

> COMMIT;

The employee table contains the following rows.

ename eno street city birthday Valid

Therese 5873 Bahnhofstrasse 121 Zurich 1961-03-21 1995-02-01 - 9999-12-31

Franziska 6542 Rennweg 683 Zurich 1963-07-04 1995-02-01 - 9999-12-31
Lilian 3463 46 Speedway Tuscon 1970-03-09 1995-02-02 - 9999-12-31

Note that the valid time extends to forever, which in SQL3 is the largest date.
The salary table contains the following rows.

eno amount Valid

6542 3200 1995-02-01 - 9999-12-31
5873 3630 1995-02-01 - 9999-12-31
3463 3400 1995-02-02 - 9999-12-31

We continue, still on February 2. Tables, views, and queries act like before, because temporal upward
compatibility is satis�ed. To �nd out where the high-salaried employees live, use the following.

> SELECT ename, city

FROM high_salary AS s, employee AS e

WHERE s.eno = e.eno;



12 DBL:LHR-096 and X3H2-95-485

Evaluated over the current state, this returns the employee Therese, in Z�urich.
Assertions and referential integrity act like before, applying to the current state. The following transaction

will abort due to (1) a violation of the PRIMARY KEY constraint, (2) a violation of the emp has sal assertion
and (3) a referential integrity violation, respectively.

> INSERT INTO employee

VALUES ('Eric', 3463, '701 Broadway', 'Tucson', DATE '1988-01-06');

> INSERT INTO employee

VALUES ('Melanie', 1234, '701 Broadway', 'Tucson', DATE '1991-03-08');

> INSERT INTO salary VALUES(9999, 4900);

> COMMIT;

3.3 Level 3: Syntactically Similar Snapshot-Reducible Language Constructs

Level 3 adds syntactically similar, snapshot-reducible, temporal counterparts of existing queries, modi�ca-
tions, views, constraints, and assertions (see Figure 3). Snapshot-reducible SQL/Temporal queries produce
temporal tables. The state of a result table at each time is computed from the state of the underlying table(s)
at the same time, via the semantics of the contained SQL3 query. In this way, users are able to express
temporal queries in a natural fashion, exploiting their knowledge of SQL3. Temporal views, assertions and
constrains can likewise be naturally expressed.

3.3.1 SQL3 Extensions

Temporal queries, modi�cations, views, assertions, and constraints are signalled by the reserved word VALID.
This reserved word can appear in a number of locations; Appendix B supplies the details.

Derived table in a from clause In the from clause, one can prepend VALID to a <table subquery>.

View de�nition Temporal views can be speci�ed, with snapshot reducible semantics.

Assertion de�nition A snapshot-reducible assertion applies to each of the states of the underlying ta-
ble(s). This is in contrast to a snapshot assertion, which is only evaluated on the current state. In
both cases, the assertion is checked before a transaction is committed.

Table and column constraints When speci�ed with VALID, such constraints must apply to all states
of the temporal table.

Cursor expression Cursors can range over temporal tables.

Single-row select Such a select can return a temporal row, with an associated valid time.

Fetch statement The period associated with a temporal row can be placed in a local variable in embed-
ded SQL.

Modi�cation statements When speci�ed with VALID, the modi�cation applies to each state comprising
the temporal table.

In all cases, the VALID reserved word indicates that snapshot reducible semantics is to be employed.

3.3.2 A Quick Tour

We evaluate the following statements on March 1, 1995.
Prepending VALID to any SELECT statement evaluates that query on all states, in a snapshot reducible

fashion. The �rst query provides the history of the monthly salaries paid to employees. This query is
constructed by �rst writing the snapshot query, then prepending VALID.

> VALID

SELECT ename, amount

FROM salary AS s, employee AS e

WHERE s.eno = e.eno;



DBL:LHR-096 and X3H2-95-485 13

This evaluates to the following.

ename amount Valid

Franziska 3200 1995-02-01 - 9999-12-31
Therese 3630 1995-02-01 - 9999-12-31
Lilian 3400 1995-02-02 - 9999-12-31

List those for which no one makes a higher salary in a di�erent city, over all time.

> VALID

SELECT ename

FROM employee AS e1, salary AS s1

WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename

FROM employee AS e2, salary AS s2

WHERE e2.eno = s2.eno

AND s2.amount > s1.amount

AND e1.city <> e2.city);

This gives the following result.

ename Valid

Therese 1995-02-01 - 9999-12-31
Franziska 1995-02-01 - 1995-02-01

Therese is listed because the only person in a di�erent city, Lilian, makes a lower salary. Franziska is listed
because for that one day, there was no one in a di�erent city (Lilian didn't join the company until February 2).

We then create a temporal view, similar to the non-temporal view de�ned earlier. In fact, the only
di�erence is the use of the reserved word VALID.

> CREATE VIEW high_salary_history AS

VALID SELECT * FROM salary WHERE s.salary > 3500;

Finally, we de�ne a temporal column constraint.

> ALTER TABLE salary ADD VALID CHECK (amount > 1000 AND amount < 12000);

> COMMIT;

Rather than being checked on the current state only, this constraint is checked on each state of the salary
temporal table. This is useful to restrict retroactive changes [6], i.e., changes to past states and proactive
changes, i.e., changes to future states. This constraint is satis�ed for all states in the table.

Snapshot reducible modi�cations are similarly handled. To remove employee #5873 for all states of the
database, we use the following statement.

> VALID DELETE FROM employee

WHERE eno = 5873;

> VALID DELETE FROM salary

WHERE eno = 5873;

> COMMIT;

To correct the common mispelling of Tucson, we use the following statement.

> VALID UPDATE employee

> SET city = 'Tucson'

> WHERE city = 'Tuscon';

> COMMIT;

This updates all incorrect values, at all times, including the past and future. Lillian's city is thus corrected.



14 DBL:LHR-096 and X3H2-95-485

3.4 Level 4: Non-Sequenced Queries and Modi�cations

Level 4 accounts for non-sequenced queries (see Figure 5) and non-sequenced modi�cations (see Figure 6).
Many useful queries and modi�cations are in this category. However, their semantics is necessarily more
complicated than that of snapshot reducible queries, because non-sequenced queries cannot exploit that useful
property. Instead, they must support the formulation of special-purpose user-de�ned temporal relationships
between implicit timestamps, datetime values expressed in the query, and stored datetime columns in the
database. These constructs and their semantics will be presented in the next and future change proposals.

4 Formal Semantics of SQL/Temporal

In this section, we provide a formal semantics for the constructs introduced into SQL/Temporal, expressed
in terms of the relational algebraic semantics for SQL3.

We use htjjVTi to denote a tuple in a temporal table. The vertical double-bar \jj" is used to separate
valid-time from explicit attributes. If V T is a period, then V T� is its beginning delimiting timestamp and
V T+ is the granule following its ending delimiting timestamp.

4.1 Translating SQL/Temporal Queries to Relational Algebra Expressions

We �rst provide the semantics of an SQL3 query over snapshot tables. In the de�nition given next, let
r1; : : : ; rn denote snapshot tables. We base the de�nition of the semantics on the semantics of SQL3,
expressed in terms of the relational algebra.

[[ <SQL{query> ]]SQL=T(r1; : : : ; rn)
4
= [[ <SQL{query> ]]standard(r1; : : : ; rn)

Here, [[ <SQL{query> ]]standard, which evaluates to the relational algebra expression that corresponds to
<SQL{query>, is assumed to be given. This de�nition satis�es upward compatibility.

Example 7: We start with a non-temporal query, i.e., a query evaluated with standard semantics. Assume
p and q are both snapshot tables. The query Q1

SELECT p.X

FROM p, q

WHERE p.X = q.X

is equivalent to the relational algebra expression

[[Q1]]SQL=T(p; q) = [[Q1]]standard(p; q) = �p:X(p 1p:X=q:X q) :

ut

The semantics of an SQL3 query over a combination of snapshot and temporal tables is very similar.
For every temporal table ri appearing as an argument, replace it with �vnow(ri) on the right hand side. The
valid-timeslice operator �vc extracts the current snapshot state from a temporal table.

�vc (r)
4
= ft j 9V T (htjjV T i 2 r ^ V T� � c ^ c < V T+)g

Example 8: We now examine a non-temporal query over a combination of snapshot and temporal tables
with standard semantics. Assume p is a snapshot table and t is a temporal table. The query Q1

SELECT p.X

FROM p, t

WHERE p.X = t.X



DBL:LHR-096 and X3H2-95-485 15

is equivalent to the relational algebra expression

[[Q1]]SQL=T(p; t) = [[Q1]]standard(p; �
v
now(t)) = �p:X(p 1p:X=t:X (�vnow(t))) :

ut

This de�nition satis�es temporal upward compatibility.
Next, we de�ne the semantics of snapshot-reducible SQL/Temporal additions in terms of the snapshot

semantics. This allows these extensions to be consistent with all snapshot constructs de�ned in SQL3.

[[VALID <SQL{query> ]]SQL=T(r1; : : : ; rn)
4
= [[ <SQL{query> ]]temporal(r1; : : : ; rn)

In this de�nition, [[ <SQL{query> ]]temporal is equivalent to [[ <SQL{query> ]]standard, except that every
non-temporal relational algebra operator (e.g., 1; �; �) is replaced by a corresponding temporal relational
algebra operator (e.g., 1v; �v; �v). We provide de�nitions of the temporal algebra in Section 4.3.

Example 9: An SQL/Temporal query Q2 = VALID Q1 is evaluated with temporal semantics, due to its
leading valid clause. Both p and q must be temporal tables. Thus,

VALID

SELECT p.X

FROM p, q

WHERE p.X = q.X

is equivalent to the temporal relational algebra expression

[[Q2]]SQL=T(p; q) = [[VALID Q1]]SQL=T(p; q) = [[Q1]]temporal(p; q) = �vp:X(p 1
v
p:X=q:X q) :

Note that apart from the v-superscripts, which are added to relational algebra operators, the translation
between SQL queries and relational algebra expressions has not changed at all. ut

The de�nitions above satisfy snapshot reducibility if the temporal relational operators are snapshot
reducible with respect to their conventional relational counterparts. The next step is to de�ne a temporal
relational algebra with this property.

4.2 The Conventional Relational Algebra

As a precursor to de�ning the temporal relational algebra, we review Codd's relational algebra.

�c(r)
4
= ft j t 2 r ^ c(t)g

�f (r)
4
= ft1 j t2 2 r ^ t1 = f(t2)g

r1 [ r2
4
= ft j t 2 r1 _ t 2 r2g

r1 1c r2
4
= ft1 � t2 j t1 2 r1 ^ t2 2 r2 ^ c(ht1 � t2i)g

r1 n r2
4
= ft j t 2 r1 ^ t 62 r2g

AGagg;f (r)
4
= ft � a j t 2 r ^ a = agg(ft1jt1 2 r ^ f(t1) = f(t)g)g

In this formalism, c is a predicate, f is a list of attributes (for the aggregate operator, a list of the GROUP BY

attributes), and agg is a function (e.g., sum3) that when applied to a set of tuples returns the single value
of the aggregate (e.g., SUM) evaluated over the indicated attribute (e.g., the third attribute).

Observe that the algebra de�ned above is based on sets and thus does not permit duplicates. We have
chosen to assume a set-based framework in the semantics given here because this yields a short de�nition
where the general approach stands out more clearly. The complications that follow from giving up the set-
based basis have been explored in the past and are omitted. We emphasize that the proposed additions to
SQL/Temporal follow the data model of SQL3 and are not strictly set based.



16 DBL:LHR-096 and X3H2-95-485

4.3 The Temporal Relational Algebra

The next step is to de�ne the temporal relational algebra operators. Informally, each de�nition respects
snapshot reducibility. In addition to that, the algebra features two properties which we would like to point
out. First, the algebra preserves the periods entered into the database, i.e., it matters for the query results
whether we store, e.g., one tuple with valid-time [10�20] or two (value-equivalent) tuples with valid-times
[10�15] and [16�20], respectively. Second, care was taken to only consider end points of period timestamps
of tuples when implementing the operators|intermediate time points are never used. This allows for an
e�cient (essentially, granularity independent) implementation.

In Figure 7, the constructor intersect (over two periods) returns a period containing those chronons
in both underlying periods, and the predicate overlaps (over two periods) returns true if the two periods
overlap and false, otherwise. Both operations are easily expressed as operations on the beginning and ending
delimiting timestamps of periods. The symbol \�" denotes concatenation. The de�nition of AGv is especially
complex. It determines constant periods, during which no tuple starts or ends [10]. A constant period can
go from the start of one tuple to the start of another, from the start of one tuple to the end of another, or
from the end of one tuple to the end of another.

�vc (r)
4
= fhtjjV T i j htjjV T i 2 r ^ c(htjjV T i)g

�vf (r)
4
= fht1jjV T i j ht2jjV T i 2 r ^ t1 = hf(t2)jjV T ig

r1 [
v r2

4
= fhtjjV T i j htjjV T i 2 r1 _ htjjV T i 2 r2g

r1 1
v
c r2

4
= fhht1; V T1i � ht2; V T2ijjV T i j ht1jjV T1i 2 r1 ^ ht2jjV T2i 2 r2 ^

c(ht1; V T1i � ht2; V T2i) ^
V T = intersect(V T1; V T2) ^ V T1 overlaps V T2g

r1 n
v r2

4
= fhtjjV T i j htjjV T1i 2 r1 ^

(9V T2(htjjV T2i 2 r2 ^ V T�1 � V T+
2 ^ V T� = V T+

2 ) _ V T� = V T�1 ) ^

(9V T3(htjjV T3i 2 r2 ^ V T+
1 � V T�3 ^ V T+ = V T�3 ) _ V T+ = V T+

1 ) ^
V T� < V T+ ^
:9V T4(htjjV T4i 2 r2 ^ V T+

4 > V T� ^ V T�4 < V T+)g

AGv
agg;f (r)

4
= fht � ajjV T i j htjjV T1i 2 r ^ ht2jjV T2i 2 r ^ f(t) = f(t2) ^

((V T� = V T�1 ^ V T+ = V T�2 )_

(V T� = V T�1 ^ V T+ = V T+
2 )_

(V T� = V T+
1 ^ V T+ = V T+

2 )) ^ V T� < V T+ ^
:9ht4jjV T4i 2 r(f(t) = f(t4)^

((V T� < V T�4 < V T+) _ (V T� < V T+
4 < V T+))) ^

a = agg(ft3jht3jjV T3i 2 r ^ V T3 overlaps V T ^ f(t) = f(t3)g)g

Figure 7: Semantics of the temporal algebra

5 A Foundation for Implementing the Extensions

We �rst provide a mapping of temporal relational operations to conventional relational algebra expressions.
We then list a range of alternatives for implementing the temporal relational operators.

5.1 Implementing the Temporal Algebra

Here, we give the conventional algebraic equivalents for the temporal algebraic operators. We emphasize
that conventional operators range over a di�erent domain (snapshot tables) than do temporal operators



DBL:LHR-096 and X3H2-95-485 17

(temporal tables). In Figure 8, the set Ari contains the explicit attributes of table ri, and a is the attribute
appended by AG.

A \v" superscript on a table indicates that it is a temporal table; those tables without such a superscript
are snapshot tables, each with an explicit V T column. The auxiliary function SN (r) = fht;VTi j htjjVTi 2 rg
maps a valid-time table into a snapshot table with valid-time being an explicit attribute. It is assumed that
temporal tables are mapped into snapshot tables using SN before conventional algebraic operators are
applied. Note that function SN is not needed at the implementation level. However, it is required here
because Codd's relational algebra operators are well-de�ned over non-temporal relations only. Finally, there
is a rename operator, �i(r) that gives table r the name i. Again, the aggregate operator is the most complex.
The relational di�erence and the outer Cartesian product are the analogs of \:9" in the calculus; the inner
Cartesian product and unions (to compute t2) are the analogs of the two tuple variables in the calculus.

�vc (r
v) ; �c(r)

�vf (r
v) ; �f;V T (r)

rv1 [
v rv2 ; r1 [ r2

rv1 1
v
c r

v
2 ; �Ar1

;V Tr1 ;Ar2
;V Tr2 ;V T=intersect(V Tr1;V Tr2 )

(r1 1c^V Tr1 overlaps V Tr2
r2)

rv1 n
v rv2 ; t2 n �At2

;V Tt2
(t2 1At2

=Ar2
^V Tt2 overlaps V Tr2

r2)

t2 = t1 [ �Ar1
;period(V T

+
r2
;V T

�

t1
)(t1 1At1

=Ar2
^V T

�

t1
�V T

+
r2
^V T

+
r2
<V T

+

t1

r2)

t1 = r1 [ �Ar1
;period(V T�r1 ;V T

�

r2
)(r1 1Ar1

=Ar2
^V T�r1<V T

�

r2
^V T�r2�V T

+
r1

r2)

AGv
agg;f (r

v) ; AGagg;f (t2 � �A1;A2;a;V T�1 ;V T
+

1

(

�f(A1)=f(A2) ^((V T�1 <V T
�

2
<VT

+

1
)_(V T

�

1
<V T

+

2
<VT

+

1
))(�1(t2)� �2(r))))

t2 = �A1;a;period(VT�1 ;V T
�

2
)(t1) [ �A1;a;period(VT�1 ;V T

+

2
)(t1) [ �A1;a;period(VT+1 ;V T

+

2
)(t1)

t1 = �A1;a;V T1;V T2(�f(A1)=f(A2)(�1(r))� �2(r))

Figure 8: Snapshot equivalents of the the temporal algebra operators

Example 10: We continue by mapping the temporal algebraic equivalent of the SQL/Temporal query
Q2 = VALID Q1 into the snapshot algebra. Here, we assume that the table p has a single column, X, and
that the table q has two columns, X and Y.

[[Q2]]SQL=T(p; q) = [[VALID Q1]]SQL=T(p; q) = [[Q1]]temporal(p; q) = �vp:X(p 1
v
p:X=q:X q)

= �Xp;V T (�Xp;V Tp;Xq;Yq;V Tq;V T=intersect(V Tp;V Tq)(SN (p) 1p:X=q:X^V Tp overlaps V Tq SN (q)))

= �Xp;V T=intersect(V Tp;V Tq)(SN (p) 1p:X=q:X^V Tp overlaps V Tq SN (q))

ut

This concludes the de�nition of the semantics of the proposed additions to SQL/Temporal.

5.2 Alternatives for Implementing SQL/Temporal

The transformations from the temporal algebra to the conventional algebra gives us several options for
implementing SQL/Temporal.

1. Map temporal queries into temporal algebra, then into regular algebra, according to Figure 8, then
back into SQL.

2. Map temporal queries into temporal algebra, then, according to Figure 7, directly into SQL.

3. Map temporal queries directly into SQL, utilizing the temporal algebra implicitly in the query rewrite
phase (this is what the prototype does).



18 DBL:LHR-096 and X3H2-95-485

Example 11: Continuing with the previous example, the SQL/Temporal query Q2 on temporal tables can
be mapped to an SQL3 query on snapshot tables where the implicit timestamps are now placed in explicit
attributes.

SELECT p.X, INTERSECT(p.VT, q.VT) AS VT

FROM p, q

WHERE p.X = q.X AND p.VT OVERLAPS q.VT

Here, we use the OVERLAPS predicate and the INTERSECT operator already present in SQL/Temporal. ut

Finally, we point out some possibilities for query optimization.

1. Map temporal queries into temporal algebra, optimize as with SQL algebra (with existing transforma-
tions and/or new cost formulas), then map back in SQL.

2. Map temporal queries into temporal algebra, then into SQL algebra, then optimize, then evaluate.

3. Map temporal queries into temporal algebra, then optimize (again, using new cost formulas), then
evaluate the temporal algebra directly, with the concomitant increase in performance.

5.3 Implementing Temporal Assertions and Constraints

The general approach to checking an assertion is to negate it and then execute it as a query [3]. If the query
result is empty, i.e., if no tuples are returned, the assertion is respected, otherwise it is violated.

Example 12: To check the assertion emp has sal from Section 3.1.2 we execute the query

SELECT *

FROM employee AS e

WHERE NOT EXISTS ( SELECT *

FROM salary AS s

WHERE e.eno = s.eno)

A non-empty result indicates a violation of the assertion. ut

Temporal assertions and constraints, speci�ed with VALID, can be checked in a similar way, with a VALID

SELECT statement.

First, note that database systems have to improve the sketched mechanism to achieve acceptable per-
formance. Well-known techniques include incremental consistency checking, simpli�cation of assertions, and
special-purpose checking algorithms for, e.g., column constraints. Second, it becomes obvious how impor-
tant it is to address all aspects of a query language when transitioning from a nontemporal to a temporal
database system. Negation, which might be used rarely in queries asked by users, is crucial for answering
assertions because these usually involve some form of implication, i.e., involve negation. In our approach, it
is no harder to state a temporal negation than it is to state a temporal join. This makes speci�cation (and
implementation) of assertions particularly elegant.

6 Summary

In this change proposal, we �rst outlined several desirable features of SQL/Temporal relative to SQL3:
upward compatibility, temporal upward compatibility, and snapshot reducibility. A series of four levels of
increasing functionality was elaborated; the constructs proposed here support the �rst three levels (the last
level will be addressed in detail in the next change proposal). The speci�c syntactic additions were outlined
and examples given to illustrate these constructs. All involve simply the use of the VALID reserved word, to
indicate temporal support (in the case of schema speci�cation statements) and snapshot reducibility (in the



DBL:LHR-096 and X3H2-95-485 19

case of queries, modi�cations, views, assertions and constraints). We provided a formal semantics, in terms
of the formal semantics of SQL3, that satis�ed the snapshot reducibility correspondence between temporal
queries and snapshot queries. Finally, we listed alternative implementation approaches which vary in the
degree of implementation di�culty and the achievable performance e�ciency.

Appendix A provides formal de�nitions of the properties discussed in Section 2. Appendix B speci�es
the language additions in terms of the SQL3 language de�nition.

We end by listing some of the advantages of the approach espoused here.

� Upward compatibility is assured, permitting existing constructs to operate exactly as before.

� Satisfaction of temporal upward compatibility ensures that existing applications do not break when
non-temporal tables are rendered temporal.

� Satisfaction of snapshot reducibility ensures that temporal queries, modi�cations, views, assertions,
and constraints are easy to specify, formalize, and implement.

� Since the semantics is de�ned in terms of the non-temporal semantics, the extensions are compatible
with all the facilities of SQL3.

� A prototype implementation exists [14]; this prototype was invaluable in re�ning the language additions.

� Transaction time support will require few syntactic or semantic extensions, and will be fully compatible
and consistent with these valid-time features.

7 Acknowledgements

This change proposal was written by the four authors listed on the title page. The �rst author was supported
in part by NSF grant ISI-9202244 and by grants from IBM, the AT&T Foundation, and DuPont. The second
and third authors were supported in part by the Danish Natural Science Research Council, grant 9400911. In
addition, the third author was supported by grants 11{1089{1 and 11{0061{1, also provided by the Danish
Natural Science Research Council. The paper was produced in part during visits by the �rst author to
Aalborg University and by the second author to the University of Arizona.

This change proposal presents a slightly improved and extended version of some of the constructs in
TSQL2, which was designed by a committee consisting of Richard T. Snodgrass (chair), Ilsoo Ahn, Gad
Ariav, Don S. Batory, James Cli�ord, Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen,
Wolfgang K�afer, Nick Kline, Krishna Kulkanri, T.Y. Cli� Leung, Nikos Lorentzos, John F. Roddick, Arie
Segev, Michael D. Soo and Suryanarayana M. Sripada. Their participation in the TSQL2 design was critical.

We thank Curtis Dyreson for helpful comments.



20 DBL:LHR-096 and X3H2-95-485

A Formal De�nition of Compatibility Properties

We have adopted the convention that a data model consists of two components, namely a set of data
structures and a language for querying the data structures [15]. Notationally,M = (DS, QL) then denotes a
data model, M, consisting of a data structure component, DS, and a query language component, QL. Thus,
DS is the set of all databases, schemas, and associated instances, expressible by M, and QL is the set of all
queries in M that may be formulated on some database in DS. We use db to denote a database and q to
denote a query.

A.1 Upward Compatibility

One data model is syntactically upward compatible with another data model if all data structures and legal
query expressions of the latter model are contained in the former model.

Definition 1: (syntactical upward compatibility) Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two
data models. Model M1 is syntactically upward compatible with model M2 if

� 8db2 2 DS2 (db2 2 DS1) and

� 8q2 2 QL2 (q2 2 QL1). ut

When transitioning from one system to a new system, it is important that the new data model contains
the existing data model. If that is the case, all existing application code will remain syntactically correct.

For a query expression q and an associated database db, both legal elements of QL and DS of data
model M = (DS;QL), de�ne hhq(db)iiM as the result of evaluating q on db in data model M . With this
notation, we can precisely describe the requirements to a new model that guarantee uninterrupted operation
of all application code. In addition to the previous syntactical requirement, we add the requirement that all
queries expressible in the existing model must evaluate to the same results in the existing and new models.

Definition 2: (upward compatibility) Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two data models.
Model M1 is upward compatible with model M2 if

� M1 is syntactically upward compatible with M2, and

� 8db2 2 DS2 (8q2 2 QL2 (hhq2(db2)iiM2
= hhq2(db2)iiM1

)). ut

This concept captures the conditions that need to be satis�ed in order to allow a smooth transition from
a current system, with data model M2, to a new system, with data model M1.

A.2 Temporal Upward Compatibility

Intuitively, the requirement is that a query q will return the same result on an associated snapshot database
db as on the temporal counterpart of the database, T (db). Further, modi�cations should not a�ect this. The
precise de�nitions given next is explained in the following.

Definition 3: (temporal upward compatibility) Let MT = (DST ; QLT ) and MS = (DSS ; QLS) be
temporal and snapshot data models, respectively. Also, let T be an operator that changes the type of
a snapshot table to the temporal table with the same explicit attributes. Next, let u1; u2; : : : ; un denote
modi�cation operations. With these de�nitions, modelMT is temporal upward compatible with model MS if

� MT is upward compatible with MS and

� 8dbS 2 DSS (8qS 2 QLS (hhqS(un(un�1(: : : (u1(dbS) : : :))))iiMS
=

(hhqS(un(un�1(: : : (u1(T (dbS))))))iiMT
))). ut



DBL:LHR-096 and X3H2-95-485 21

Assume that, when moving to the new system, some of the existing (snapshot) tables are transformed into
temporal tables, using ALTER, without changing the existing set of (explicit) attributes. This transformation
is denoted by T in the de�nition. Then the same sequence of modi�cation statements, denoted by the ui
in the de�nition, is applied to the snapshot and the temporal databases. Next, consider any query in the
snapshot model. Such queries are also allowed in the temporal model, due to upward compatibility being
required. The de�nition states that any such query evaluated on the resulting temporal database, using
the semantics of the temporal query language, yields the same result as when evaluated on the resulting
snapshot database, now using the semantics of the snapshot query language.

A.3 Snapshot Reducibility

We �rst de�ne the notion of snapshot reducibility among query languages. We use r and rv for denoting
a snapshot and a valid-time table instance, respectively. Similarly, db and dbv are sets of snapshot and
valid-time table instances, respectively.

The de�nition uses a valid-timeslice operator �M
v;M

c (e.g., [9, 1]) which takes as arguments a valid-time
table rv (in the data model Mv) and a valid-time granule c and returns a snapshot table r (in the data
modelM ) containing all tuples valid at time c. In other words, r consists of all tuples of rv whose valid time
includes the time granule c, but without the valid time. This operator was already introduced in Section 4.1;
here, we simply have emphasized the models involved by using them as superscripts.

Definition 4: (snapshot reducibility) Let M = (DS;QL) be a snapshot relational data model, and let
Mv = (DSv ; QLv) be a valid-time data model. Data model Mv is snapshot reducible with respect to data
model M if

8q 2 QL (9qv 2 QLv (8dbv 2 DSv (8c (�M
v;M

c (qv(dbv)) = q(�M
v;M

c (dbv)))))). ut

Graphically, snapshot reducibility implies that for all query expressions q in the snapshot model, there
must exist a query qv in the temporal model so that for all dbv and for all c, the commutativity diagram
shown in Figure 9 holds.

?

-

?

-

dbv

�M
v;M

c (dbv)

qv(dbv)

q(�M
v;M

c (dbv)) = �M
v;M

c (qv(dbv))

qv

q

timeslices at c timeslice at c

Figure 9: Snapshot reducibility of query qv with respect to query q at a chronon c

We require that each query q in the snapshot model has a counterpart qv in the temporal model that is
snapshot reducible with respect to it. Observe that qv being snapshot reducible with respect to q poses no
syntactical restrictions on qv. It is thus possible for qv to be quite di�erent from q, and qv might be very
involved. This is undesirable, as we would like the temporal model to be a straight-forward extension of the
snapshot model. Consequently, we require that qv and q be syntactically identical.

Definition 5: (syntactically identical snapshot-reducible extension) LetM = (DS;QL) be a snapshot data
model, and let Mv = (DSv ; QLv) be a valid-time data model. Data model Mv is a syntactically identical
snapshot-reducible extension of model M if both of the following conditions hold.

1. Data model Mv is snapshot reducible with respect to data model M and

2. Each query in QLv that is snapshot reducible with respect to a query in QL is syntactically identical
to that query. ut



22 DBL:LHR-096 and X3H2-95-485

If the valid-time data model treats valid-time tables as a new type of table, it is possible to use the same
syntactical constructs (i.e., qv and q are identical) for querying snapshot and valid-time tables. In this case,
the type of a table determines the meaning of the syntactical construct.

However, the identity property is incompatible with also requiring temporal upward compatibility. This
latter property requires that a query from the snapshot model, when applied to a valid-time database, returns
a snapshot table. The property just de�ned requires the snapshot query to return a temporal table when
evaluated on the valid-time database.

Thus, not both of these properties can be satis�ed by a temporal data model and the snapshot model it
generalizes.

Our solution is to slightly relax the identity requirement, leading to the property de�ned below. With
that property satis�ed, the temporal queries may still exploit the programmers' intuition about the snapshot
query language as much as possible.

Definition 6: (syntactically similar snapshot-reducible extension) Let M = (DS;QL) be a snapshot data
model, and let Mv = (DSv ; QLv) be a valid-time data model. Data model Mv is a syntactically similar
snapshot-reducible extension of model M if both of the following conditions hold.

1. Data model Mv is snapshot reducible with respect to data model M and

2. For each query qv in QLv that is snapshot reducible with respect to a query q in QL, qv = S1qS2,
where S1 and S2 are text strings that depend on QLv but not on qv. ut

This property is consistent with temporal upward compatibility; the language designer simply has to select
at least one of S1 or S2 as being non-empty. For the addition to SQL/Temporal proposed here, S1 is simply
\VALID", and S2 is the empty string.

A.4 Properties of SQL/Temporal

We have developed a formal denotational semantics for SQL/Temporal, in terms of the semantics of SQL3.
This semantics allowed us to prove the following important properties.

� SQL/Temporal is upward compatible with SQL3.

� SQL/Temporal is temporally upward compatible with SQL3.

� The VALID reserved word prepended to the SELECT statement ensures (syntactically similar) snapshot
reducibility [1, 3].

� SQL/Temporal is temporally ungrouped [4].



DBL:LHR-096 and X3H2-95-485 23

B Extensions to the Language

The syntax is given as extensions to \Database Language SQL | Part 2: SQL/Foundation" and \Database
Language SQL | Part 7: Temporal," October, 1995 versions [7, 8]. Modi�cations are indicated with \�".
Some of the nonterminals, e.g., <valid expression> and <time option>, are present to facilitate future
extensions found in the TSQL2 design.

C Section 3.1 De�nitions

Add the following terms.

e) temporal upward compatibility: requires that all SQL3 queries will return the same result on an
associated snapshot database as on the temporal counterpart of the database, and all SQL3 modi�ca-
tions on a temporal table will produce a current state equal to that modi�cation on a snapshot table
with contents equal to the old current state of the temporal table.

f) snapshot reducible semantics: An SQL3 query is applied independently to each state of the
database, producing a state of the resulting temporal table. An SQL modi�cation is applied inde-
pendently to each state of the database, producing a possibly modi�ed new state of the temporal
table.

D Section 5 Lexical elements

D.1 Section 5.2 <token> and <separator>

The production for the non-terminal <reserved word> is modi�ed to add one reserved word.

<reserved word> ::=
�

�
� VALID



24 DBL:LHR-096 and X3H2-95-485

E Section 6 Scalar expressions

E.1 Section 6.7 <table reference>

In the production for the non-terminal <derived table> an optional <time expression> is added.

<derived table> ::=
� [ <time expression> ]

<table subquery>

The following productions are added, to de�ne <time expression>

<time expression> ::=
� <valid expression>

<valid expression> ::=
� <valid option>

<valid option> ::=
� VALID

Additional syntax rules:

1. If VALID is speci�ed in <derived table>, then each exposed correlation name within the <table
subquery> shall identify a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <derived table>, then the <table subquery> is evaluated according to
temporal upward compatibility, resulting in a snapshot table. Each valid-time table identi�ed by an
exposed correlation name within the <table subquery> is timesliced to the current timestamp, and
thereafter is considered to be a snapshot table in the evaluation of <table subquery>.

2. If VALID is speci�ed in <derived table>, then the <table subquery> is evaluated according to snapshot
reducibility, resulting in a valid-time table. The <table subquery> is evaluated on each state of the
underlying tables, to produce a state of the resulting table.



DBL:LHR-096 and X3H2-95-485 25

F Section 11 Schema de�nition and manipulation

F.1 Section 11.3 <table de�nition>

The production for the non-terminal <table de�nition> is augmented with an additional, optional clause to
specify that the new table is to be a valid-time state table.

<table de�nition> ::=
CREATE [ <table scope> ] [ EXTENT ] TABLE <table name>�

<table element list>
�
� <subtable clause>

	

� [ <temporal de�nition> ]
[ ON COMMIT <table commit action> ROWS ]

Two productions are added.

<temporal de�nition> ::=
� AS VALID [ <table precision> ]

<table precision> ::=
� <left paren> <period precision> <right paren>

Additional general rules:

1. If VALID is speci�ed, the table is a valid-time state table. The rows are timestamped with valid-time
periods, whose precision can be stated.

2. If VALID is not speci�ed, the table is a snapshot table.



26 DBL:LHR-096 and X3H2-95-485

F.2 Section 11.6 <column de�nition>

An optional <time option> is added to column constraints.

<column constraint de�nition> ::=
[ <constraint name de�nition> ]

� [ <time option> ]
<column constraint> [ <constraint attributes> ]

One production is added.

<time option> ::=
<valid option>

Additional syntax rules:

1. If VALID is speci�ed,

CASE

(a) If <column constraint> is <references speci�cation>, then the table identi�ed by <table name>
within that construct shall be a valid-time table.

(b) If <column constraint> is <check constraint de�nition>, then each table associated with an
exposed correlation name shall be a valid-time table.

Additional General Rules:

1. If no <time option> is speci�ed, then temporal upward compatibility semantics is used.

2. A <time option> of VALID denotes snapshot reducible semantics.



DBL:LHR-096 and X3H2-95-485 27

F.3 Section 11.10 <table constraint de�nition>

An optional <time option> is added to table constraints.

<table constraint de�nition> ::=
[ <constraint name de�nition> ]

� [ <time option> ]
<table constraint> [ <constraint attributes> ]

Additional syntax rules:

1. If VALID is speci�ed in <table constraint de�nition>, then each exposed correlation name within the
<table constraint> shall identify a valid-time table.

Additional General Rules:

1. If no <time option> is speci�ed, then temporal upward compatibility semantics is used.

2. A <time option> of VALID denotes snapshot reducible semantics.

3. If <time option> is speci�ed, then it determines the semantics of the <column constraint>.

CASE:

(a) For temporal upward compatibility, the current state (valid at the current timestamp) of each
relevant valid-time table shall satisfy the <table constraint>.

(b) For snapshot reducibility, the state at each granule of each relevant valid-time table shall satisfy
the <table constraint>.



28 DBL:LHR-096 and X3H2-95-485

F.4 Section 11.14 <alter table statement>

The <alter table statement> is augmented with the following alternatives.

<alter table action> ::=
�

�
� <add valid de�nition>

�
�
� <drop valid de�nition>

�
�� <scale valid de�nition>

The following productions are added.

<add valid de�nition> ::=
� ADD VALID [ <table precision> ]

<drop valid de�nition> ::=
� DROP VALID

<scale valid de�nition> ::=
� SCALE VALID AS <table precision>

Additional syntax rules:

1. Let T be the table identi�ed in the containing <alter table statement>.

2. For the <add valid de�nition>, T shall be a snapshot table.

3. For the <drop valid de�nition>, T shall be a valid-time table.

4. For the <scale valid de�nition>, T shall be a valid-time table.

Additional general rules:

1. For the <add valid de�nition>, T is converted from a snapshot table to a valid-time state table, valid
from the current timestamp to forever.

2. For the <drop valid de�nition>, T is converted from a valid-time state table to a snapshot table with
contents

SELECT * FROM T

That is, the snapshot state valid at the current timestamp is retained.

3. For <scale valid de�nition>, the period timestamp of each tuple of T is converted to the new precision
speci�ed, via the appropriate CAST.



DBL:LHR-096 and X3H2-95-485 29

F.5 Section 11.26 <view de�nition>

An optional <time expression> is added to views.

<view de�nition> ::=
CREATE VIEW <table name> [ <left paren> <view column list> <right paren> ] AS

� [ <time expression> ]
<query expression>
[ WITH [ <levels clause> ] CHECK OPTION ]

Additional syntax rules:

1. If VALID is speci�ed in <time expression>, then each exposed correlation name within the <query
expression> shall identify a valid-time table.

Additional General Rules:

1. The type of the view (snapshot or valid-time) is the same as the type implied by the <time expression>.

2. If VALID is not speci�ed in <time expression>, then the <query expression> is evaluated according
to temporal upward compatibility, resulting in a snapshot view. Each valid-time table identi�ed by an
exposed correlation name within the <query expression> is timesliced to the current timestamp, and
is thereafter considered to be a snapshot table in the evaluation of <query expression>.

3. If VALID is speci�ed in <time expression>, then the <query expression> is evaluated according to
snapshot reducibility, resulting in a valid-time view. The <query expression> is evaluated on each
state of the underlying tables, to produce a state of the resulting view.



30 DBL:LHR-096 and X3H2-95-485

F.6 Section 11.43 <assertion de�nition>

An optional <time option> is added to assertions.

<triggered assertion> ::=
� [ <time option> ]

CHECK <left paren> <search condition> <right paren>

Additional General Rules:

1. If no <time option> is speci�ed, then temporal upward compatibility semantics is used.

2. A <time option> of VALID denotes snapshot reducible semantics.

3. If <time option> is speci�ed, then it determines the semantics of the <column constraint>.

CASE:

(a) For temporal upward compatibility, the current state (valid at the current timestamp) of each
relevant valid-time table shall satisfy the <search condition>.

(b) For snapshot reducibility, the state at each granule of each relevant valid-time table shall satisfy
the <search condition>.



DBL:LHR-096 and X3H2-95-485 31

G Section 13 Data manipulation

G.1 Section 13.1 <declare cursor>

The <cursor speci�cation> is extended to optionally be preceded by a <time expression>.

<cursor speci�cation> ::=
� [ <time expression> ]

<query expression> [ <order by clause> ] [ <updatability clause> ]

Additional syntax rules:

1. If VALID is speci�ed in <time expression>, then each exposed correlation name within the <query
expression> shall identify a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression>, then the <query expression> is evaluated according
to temporal upward compatibility, resulting in a snapshot table. Each valid-time table identi�ed by an
exposed correlation name within the <query expression> is timesliced to the current timestamp, and
thereafter is considered to be a snapshot table in the evaluation of <query expression>.

2. If VALID is speci�ed in <time expression>, then the <query expression> is evaluated according to
snapshot reducibility, resulting in a valid-time table. The <query expression> is evaluated on each
state of the underlying tables, to produce a state of the resulting table.



32 DBL:LHR-096 and X3H2-95-485

G.2 Section 13.3 <fetch statement>

The <fetch statement> is extended to also allow the period of validity of the row to be accessed.

<fetch statement> ::=
FETCH [ [ <fetch orientation> ] FROM ] <cursor name>
[ INTO <fetch target list> ]

� [ INTO VALID <target speci�cation> ]

Additional syntax rules:

1. At least one of INTO <fetch target list> and INTO VALID <fetch target list> shall be present in a
<fetch statement>.

Additional general rules:

1. The period of the validity time associated with the row is assigned to the target of the <fetch target
list> following INTO VALID.



DBL:LHR-096 and X3H2-95-485 33

G.3 Section 13.5 <select statement: single row>

A <time expression> can be prepended to this statement.

<select statement: single row> ::=
� [ <time expression> ]

SELECT [ <set quanti�er> ] <select list>
INTO <select target list>
<table expression>

Additional syntax rules:

1. If VALID is speci�ed in <time expression>, then each exposed correlation name within the <table
expression> shall identify a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression>, then the <table expression> is evaluated according
to temporal upward compatibility, resulting in a snapshot table. Each valid-time table identi�ed by an
exposed correlation name within the <table expression> is timesliced to the current timestamp, and
is thereafter considered to be a snapshot table in the evaluation of <table expression>.

2. If VALID is speci�ed in <time expression>, then the <table expression> is evaluated according to
snapshot reducibility, resulting in a valid-time table. The <table expression> is evaluated on each
state of the underlying tables, to produce a state of the resulting table.



34 DBL:LHR-096 and X3H2-95-485

G.4 Section 13.6 <delete statement: positioned>

The production for the non-terminal <delete statement: positioned> is augmented with an additional,
optional clause.

<delete statement: positioned> ::=
� [ <time option> ]

DELETE [ FROM <table reference> ]
WHERE CURRENT OF <cursor name>

Additional syntax rules:

1. Let T be the subject table of the <delete statement: positioned>.

2. If VALID is speci�ed in <time expression>, then T shall be a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression> and T is a valid-time table, then the portion of the
row's validity period that overlaps the period from the current timestamp to forever is removed. If the
resulting validity period is empty, then the row itself is deleted.

2. If VALID is speci�ed in <time expression>, then the row itself is deleted.



DBL:LHR-096 and X3H2-95-485 35

G.5 Section 13.7 <delete statement: searched>

The production for the non-terminal<delete statement: searched> is augmented with an additional, optional
clause.

<delete statement: searched> ::=
� [ <time option> ]

DELETE FROM <table reference>
[ WHERE <search condition> ]

Additional syntax rules:

1. Let T be the subject table of the <delete statement: searched>.

2. If VALID is speci�ed in <time expression>, then T shall be a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression>, then the <search condition> is evaluated according
to temporal upward compatibility. Each valid-time table identi�ed by an exposed correlation name
within the <table expression> is timesliced to the current timestamp, and thereafter is considered to
be snapshot table in the evaluation of <search condition>. If the <search condition> is satis�ed for
the relevant row and T is a valid-time table, the portion of the row's validity period that overlaps the
period from the current timestamp to forever is removed. If the validity period is empty, then the row
itself is deleted.

2. If VALID is speci�ed in <time expression>, then the <search condition> is evaluated according to
snapshot reducibility. If the <search condition> is satis�ed for the relevant row, the granule associated
with that state is removed from the row's period of validity. If the validity period is empty, then the
row itself is deleted.



36 DBL:LHR-096 and X3H2-95-485

G.6 Section 13.8 <insert statement>

A <time expression> may optionally be prepended to the <insert statement>.

<insert> ::=
� [ <time expression> ]

INSERT INTO
�
<table reference>

�
� CURSOR <cursor name>

	

<insert columns and source>

Additional syntax rules:

1. T is the subject table of the <insert statement>.

2. If VALID is speci�ed in <time expression>, then each exposed correlation name within the <query
expression> within <insert columns and source> shall identify a valid-time table. Also, T shall be a
valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression>, then the <query expression> in <insert columns and
source> is evaluated according to temporal upward compatibility, resulting in a snapshot table. Each
valid-time table identi�ed by an exposed correlation name within the <query expression> is timesliced
to the current timestamp, and thereafter is considered to be a snapshot table in the evaluation of
<query expression> in <insert columns and source>. If T is a valid-time table, the rows of the
resulting snapshot table are associated with a period of validity of the current timestamp to forever,
and are inserted into T .

2. If VALID is speci�ed in <time expression>, then the <query expression> in <insert columns and
source> is evaluated according to snapshot reducibility, resulting in a valid-time table. The <query
expression> is evaluated on each state of the underlying tables, to produce a state of the resulting
table. The rows of this result are then inserted into T .



DBL:LHR-096 and X3H2-95-485 37

G.7 Section 13.9 <update statement: positioned>

A <time expression> may optionally be prepended to the <update statement: positioned>.

<update statement: positioned> ::=
� [ <time expression> ]

UPDATE [ <table reference>
SET <set clause list>

WHERE CURRENT OF <cursor name>

Additional syntax rules:

1. Let T be the subject table of the <update statement: positioned>.

2. If VALID is speci�ed in <time expression>, then T shall be a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression> and T is a valid-time table, then the column values
associated with the portion of the row's validity period that overlaps the period from the current
timestamp to forever are updated as speci�ed in the <set clause list>. If the row's period of validity
is covered by the period from the current timestamp to forever, then the entire row is updated.

2. If VALID is speci�ed in <time expression>, then the entire row is updated.



38 DBL:LHR-096 and X3H2-95-485

G.8 Section 13.10 <update statement: searched>

A <time expression> may optionally be prepended to the <update statement: searched>.

<update statement: searched> ::=
� [ <time expression> ]

UPDATE <table reference>
SET <set clause list>

[ WHERE <search condition> ]

Additional syntax rules:

1. Let T be the subject table of the <update statement: searched>.

2. If VALID is speci�ed in <time expression>, then T shall be a valid-time table.

Additional general rules:

1. If VALID is not speci�ed in <time expression>, then the <search condition> is evaluated according
to temporal upward compatibility. Each valid-time table identi�ed by an exposed correlation name
within the <table expression> is timesliced to the current timestamp, and thereafter is considered to
be a snapshot table in the evaluation of <search condition>. If the <search condition> is satis�ed for
the relevant row and T is a valid-time table, the portion of the row's validity period that overlaps the
period from the current timestamp to forever is updated as speci�ed by the <set clause list>.

2. If VALID is speci�ed in <time expression>, then the <search condition> is evaluated according to
snapshot reducibility. If the <search condition> is satis�ed for the relevant row for a particular granule,
the columns speci�ed by the <set clause list> are update for the granule associated with that state.



DBL:LHR-096 and X3H2-95-485 39

H Section 18 Information Schema and De�nition Schema

The base tables are extended by one column indicating whether the construct is a valid-time construct.

H.1 Section 18.3.10 TABLES base table

ALTER TABLE TABLES ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('STATE','NONE'))

H.2 Section 18.3.11 VIEWS base table

ALTER TABLE VIEWS ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('STATE','NONE'))

H.3 Section 18.3.15 TABLE CONSTRAINTS base table

ALTER TABLE TABLE CONSTRAINTS ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('VALID','NONE'))

H.4 Section 18.3.16 KEY COLUMN USAGE base table

ALTER TABLE KEY COLUMN USAGE ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('VALID','NONE'))

H.5 Section 18.3.17 REFERENTIAL CONSTRAINTS base table

ALTER TABLE REFERENTIAL CONSTRAINTS ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('VALID','NONE'))

H.6 Section 18.3.18 CHECK CONSTRAINTS base table

ALTER TABLE CHECK CONSTRAINTS ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('VALID','NONE'))



40 DBL:LHR-096 and X3H2-95-485

H.7 Section 18.3.22 ASSERTIONS base table

ALTER TABLE ASSERTIONS ADD COLUMN

VALID TIME CHARACTER DATA

CONSTRAINT VALID TIME CHECK

CHECK (VALID TIME IN ('VALID','NONE'))


