The Association for Computers and the Humanities (ACH)
The Association for Computational Linguistics (ACL)

The Association for Literary and Linguistic Computing (ALLC)

Guidelines for Electronic Text
Encoding and Interchange

Edited by C. M. Sperberg-McQueen and Lou Burnard
TEI P3 Text Encoding Initiative Chicago, Oxford
Copyright (¢) 1990, 1992, 1993, 1994 ACH, ACL, ALLC

16 May 1994

1

Contents

I Introduction

1 About These Guidelines

1.1

1.2

1.3

Structure and Notational Conventions of this Document
I.1.L1 Structure e e
1.1.2 Notational Conventions,
Underlying Principles and Intended Use
1.2.1 Design Principles of the TEI Scheme
1.2.2 IntendedUse
Historical Background o Lo Lo
1.3.1 Origin and Developmentofthe TEI
1.3.2 Future Developments

2 A Gentle Introduction to SGML

2.1 What’s Special about SGML? L L Lo
2.1.1 Descriptive Markupo oL
2.1.2 Typesof Document
2.1.3 Datalndependence L
2.2 Textual Structure L e
2.3 SGML Structures
2.3.1 Elements
2.3.2 Content Models: An Example
2.4 Defining SGML Document Structures: The DTD
241 AnExample DTD
2.4.2 MinimizationRuleso Lo oL
24.3 ContentModel
244 Occurrence Indicators L L Lo
245 Group Connectors
246 ModelGroups
2.5 Complicating the Issue: More on Element Declarations
2.5.1 Exceptions to the Content Model
2.5.2 Concurrent StruCtures oo v v v i
2.6 Attributes ...
2.7 SGMLEntities
2.8 Marked Sections L
2.9 Putting It All Together
2.9.1 The SGML Declaration
292 TheDTD e
2.9.3 The Document Instance
210 Using SGML
3 Structure of the TEI Document Type Definition
3.1 Mainand Auxiliary DTDs oo Lo
3.2 Core, Base, and Additional Tag Sets
3.2.1 The Core TagSets

(24

[eol¥er e R e I

12
13
13

15
16
16
16
16
17
17
17
18
20
20
21
21
21
21
22
23
23
24
26
29
30
32
32
32
33
34

CONTENTS

1

II

3.3
3.4
3.5
3.6

3.7

3.8

322 TheBaseTagSets.
3.2.3 The Additional Tag Sets
3.24 User-Defined Tag Sets
Invocation of the TEIDTD
Combining TEI Base Tag Sets
Global Attributes
The TEI2DTD File o
3.6.1 Structure of the TEI2DTD File
3.6.2 Embedding Local Modifications
3.6.3 Embedding the Core Tag Sets
3.6.4 Embedding the Base TagSet
3.6.5 Embedding the Additional Tag Sets
Element Classes
3.7.1 Classes Which Share Attributes
3.7.2 Classes Used in Content Models
3.7.3 The TEICLAS2.ENT File
3.74 Low-Level Element Classes
3.7.5 High-Level Element Classes
3.7.6 Elements Marked for Text Type
3.7.7 Standard Content Models
3.7.8 Components in Mixed and General Bases
3.7.9 Miscellaneous Content-Model Classes
Other Parameter Entitiesin TEIDTDs
3.8.1 Inclusion and Exclusion of Elements
3.8.2 Parameter Entities for Element Generic Identifiers
3.8.3 Parameter Entities for TEI Keywords

Core Tags and General Rules

Characters and Character Sets

4.1

4.2
4.3
4.4

Local Character Sets
4.1.1 Characters Available Locally
4.1.2 Characters Not Available Locally
Shifting Among Character Sets
Character Set Problems in Interchange
The Writing System Declaration

The TEI Header

5.1

5.2

5.3

Organization of the TEI Header
5.1.1 The TEI Header and Its Components
5.1.2 Types of Contentin the TEI Header
The File Description
5.2.1 TheTitle Statement
5.2.2 The Edition Statement L Lo L
5.2.3 Typeand ExtentofFile
5.2.4 Publication, Distribution, etc.
5.2.5 The Series Statement Lo o
5.2.6 The Notes Statement L
5.2.7 The Source Descriptiono
5.2.8 Computer Files Derived from Other Computer Files
5.2.9 Computer Files Composed of Transcribed Speech
The Encoding Description. 0L
5.3.1 The Project Description,
5.3.2 The Sampling Declaration
5.3.3 The Editorial Practices Declaration

69

71
71
72
72
74
75
76

CONTENTS

6

5.3.4 The Tagging Declaration
5.3.5 The Reference System Declaration
5.3.6 The Classification Declaration
5.3.7 The Feature System Declaration
5.3.8 The Metrical Declaration Element
5.3.9 The Variant-Encoding Method Element
5.4 The Profile Description
54.1 Creation e
542 LanguageUsage
5.4.3 The Text Classification
5.5 TheRevision Description
5.6 Minimal and Recommended Headers
5.7 Note for Library Cataloguers
Elements Available in All TEI Documents
6.1 Paragraphs
6.2 Treatmentof Punctuation L o
6.3 Highlighting and Quotation,
6.3.1 What Is Highlighting?
6.3.2 Emphasis, Foreign Words, and Unusual Language
6.3.3 Quotation
6.3.4 Terms, Glosses,and CGited Words
6.3.5 Some Further Examples
6.4 Names, Numbers, Dates, Abbreviations, and Addresses
6.4.1 Referring Strings L
6.4.2 Addresses
6.4.3 Numbersand Measures
6.4.4 Datesandtimes L L
6.4.5 Abbreviations and Their Expansions
6.5 Simple Editorial Changes L
6.5.1 Correction of Apparent Errors
6.5.2 Regularization and Normalization
6.5.3 Additions, Deletions and Omissions
6.6 Simple Links and Cross References,
6.7 LiSts
6.8 Notes, Annotation, and Indexing Lo 0L
6.8.1 Notes and Simple Annotation
6.8.2 IndexEntries L oL
6.9 Reference Systems
6.9.1 Using the ID and N Attributes
6.9.2 Creating New Reference Systems
6.9.3 Milestone Tags
6.9.4 Declaring Reference Systems
6.10 Bibliographic Citations and References
6.10.1 Elements of Bibliographic References
6.10.2 Components of Bibliographic References
6.10.3 Bibliographic Pointers0 0 L
6.10.4 Relationship to Other Bibliographic Schemes
6.11 Passagesof Verseor Drama
6.11.1 Core Tagsfor Verse,
6.11.2 Core Tagsfor Drama
6.12 Overview of the Core Tag Set
Default Text Structure
7.1 Divisionsofthe Body o
7.1.1 Un-numbered Divisions

98
100
104
105
106
107
108
109
109
111
112
114
116

119
120
121
123
123
124
127
130
131
132
132
134
135
137
139
140
141
143
144
147
149
152
152
154
155
156
157
158
161
162
163
166
175
175
176
177
179
181

183
185
185

111

CONTENTS

v

7.1.2 Numbered Divisions 186

7.1.3 Numbered or Un-numbered?. 187

7.1.4 Partial and Composite Divisions 189

7.2 Elements Common to All Divisions 190
7.2.1 Headingsand Trailers., 191

722 Openersand Closers 192

7.2.3 Arguments and Epigraphs 0o 000000 193

7.2.4 Content of Textual Divisions 194

7.3 GroupsofTexts 195

74 TrontMatter 201

7.5 TitlePages 203

7.6 BackMatter 205

7.7 DTD Fragment for Default Text Structure 207
III Base Tag Sets 209
8 Base Tag Set for Prose 211
9 Base Tag Set for Verse 213
9.1 Structure of the Base Tag Setfor Verse 213
9.2 Structural Divisions of Verse Texts 0 .. 214
9.3 Componentsof the Verse Line 218
9.4 Rhyme and Metrical Analysis 221
9.4.1 Sample Metrical Analyses. o 0oL 221

9.4.2 Segment-Level versus Line-level Tagging 223

9.4.3 Metrical Analysis of Stanzaic Verse 224

9.5 Rhyme 225
9.6 Encoding Procedures For Other Verse Features 226

10 Base Tag Set for Drama 227
10.1 Frontand Back Matter 228
10.1.1 The SetElement 229

10.1.2 Prologues and Epilogues 230

10.1.3 Records of Performances 232

10.1.4 CastLists 233

10.2 The Body of a Performance Text 235
10.2.1 Major Structural Divisionso Lo 236

10.2.2 Speechesand Speakers L L oL 237

10.2.3 Stage Directions L Lo 238

10.2.4 Speech Contents.o i 241

10.2.5 Embedded Structures Lo 242

10.2.6 Simultaneous Action Lo 245

10.3 Other Types of Performance Text 246
10.3.1 Technical Information 248

11 Transcriptions of Speech 249
11.1 General Considerations and Overview 250
TLLILL DIvISIONS . . .o vt v et e e e e e e e e e 252

11.2 Elements Unique to Spoken Texts 253
11.2.1 Utterances oo v v vttt e e 254

11.22 Pauseo 255

11.2.3 Vocal, Kinesic, Event 256

1124 Writing o . o0 257

11.2.5 Temporal Information 257

11.2.6 Shifts 258

CONTENTS

11.2.7 Formal Definition 259

11.3 Elements Defined Elsewhereo o 0 L. 260
11.3.1 Segmentationt 261
11.8.2 Synchronization and Overlap 262
11.3.3 Regularization of Word Forms 266
11.3.4 Prosody e 266
11.8.5 Speech Management 267
11.83.6 AnalyticCoding 268

12 Print Dictionaries 269
12.1 Dictionary Body and Overall Structure 270
12.2 The Structure of Dictionary Entries 274
12.2.1 Hierarchical Levels 0 .. 274
12.2.2 Groups and Constituentso oo 276

12.3 Top-level Constituents of Entries 279
12.3.1 Information on Written and Spoken Forms 279
12.3.2 Grammatical Informationo L0 284
12.3.3 Sense Information L L Lo 286
12.3.4 Etymological Information 289
12.3.5 Other Information 290
12.3.6 Related Entries L0 o 296

12.4 Headword and Pronunciation References 297
12.5 Typographic and Lexical Information in Dictionary Data. 300
12.5.1 Editorial View oL 301
1252 Lexical Viewo L Lo 303
12.5.3 Retaining Both Viewso 0 L. 304
12.5.4 Attributes for Dictionary Elements 307

12.6 Unstructured Entries L Lo o 308
13 Terminological Databases 311
13.1 The Terminological Entry 312
13.2 Tags for Terminological Data 312
13.3 Basic Structure of the Terminological Entry 316
13.3.1 Nested Term Entries, 316
13.3.2 Flat Term Entries Using Rules of Adjacency 316
13.3.3 Flat Term Entries Using Group and Depend Attributes 317
13.3.4 References between Term Entries 319

13.4 Opverall Structure of Terminological Documents 319
13.4.1 DTD Fragment for Nested Style 321
13.4.2 DTD Fragmentfor Flat Style 322

13.5 Additional Examples of Term Entries 323
13.5.1 Example Term Entry from ISO472 324
13.5.2 The Example Treated as a Single Term Entry in Nested Form 324
13.5.3 The Example Treated as Two Separate Term Entries in Nested Form . . 325
13.5.4 The Example Treated as a Flat Term Entry Using Adjacency Rules . . . 326

13.5.5 The Example Treated as a Flat Term Entry Not Using Adjacency Rules 327

IV Additional Tag Sets 329
14 Linking, Segmentation, and Alignment 331
14.1 Polnters 333
14.1.1 Pointersand Links L o 333

14.1.2 Using Pointersand Links 335

14.1.3 GroupsofLinks L L 337

14.1.4 Intermediate Pointers Lo 0L 340

CONTENTS

vi

14.2 Extended Pointers L
14.2.1 Extended Pointer Elements L.
14.2.2 Extended Pointer Syntax oL
14.2.3 Using Extended Pointers

14.3 Segmentsand Anchors. Lo Lo Lo Lo Lo

14.4 Correspondence and Alignment L.
14.4.1 Correspondenceo i it e
14.4.2 Alignment of Parallel Texts
14.4.3 AThree-way Alignment

14.5 Synchronization
14.5.1 Aligning Synchronous Events
14.5.2 Placing Synchronous Eventsin Time

14.6 Identical Elements and Virtual Copies

14.7 Aggregation

14.8 Alternation

14.9 Connecting Analytic and Textual Markup

15 Simple Analytic Mechanisms

15.1 Linguistic Segment Categorieso v it i
15.2 Global Attributes for Simple Analyses 0L
15.3 Spans and Interpretations Lo
154 Linguistic Annotation

16 Feature Structures

16.1 Introduction
16.2 Elementary Feature Structures: Features with Binary Values
16.3 Feature, Feature-Structure and Feature-Value Libraries
16.4 Symbolic, Numeric, Measurement, Rate and String Values
16.5 Structured Values L
16.6 Singleton, Set, Bag and List Collections of Values
16.7 Alternative Features and Feature Values
16.8 Boolean, Default and Uncertain Values
16.9 Indirect Specification of Values Using the rel Attribute
16.9.1 The Not-Equals Relation
16.9.2 Other Inequality Relations
16.9.3 Subsumption and Non-subsumption Relations
16.9.4 Relations Holding with Sets, Bags,and Lists
16.9.5 Varieties of Subsumption and Non-subsumption
16.10Two HMlustrations o e

17 Certainty and Responsibility

17.1 Levelsof Certainty i
17.1.1 Using Notes to Record Uncertainty
17.1.2 Structured Indications of Uncertainty

17.2 Attribution of Responsibility oo o o

18 Transcription of Primary Sources

18.1 Altered, Corrected, and Erroneous Texts
18.1.1 Use of Core Tags for Transcriptional Work
18.1.2 Abbreviation and Expansion L.
18.1.3 Correction and Conjecture
18.1.4 Additions and Deletions Lo L L.
18.1.5 Substitutions
18.1.6 Cancellation of Deletions and Other Markings
18.1.7 Text Omitted from or Supplied in the Transcription

18.2 Non-Linguistic Phenomena in the Source

381
382
387
387
392

397
397
398
400
402
408
410
413
417
421
421
422
422
425
426
427

435
435
436
436
440

CONTENTS

18.2.1 DocumentHands
18.2.2 Hand, Responsibility, and Certainty Attributes
18.2.3 Damage, Illegibility, and Supplied Text
18.2.4 The Use of the Gap, Del, Damage, Unclear and Supplied Tags in
Combination L o

18.25 Space. e
1826 Lines

18.3 Headers, Footers, and Similar Matter
18.4 Other Primary Source Features not Covered in These Guidelines

19 Critical Apparatus
19.1 The Apparatus Entry, Readings, and Witnesses
19.1.1 The ApparatusEntry L o
19.1.2 Readings L
19.1.3 Indicating Subvariation in Apparatus Entries
19.1.4 Witness Information. o L L
19.1.5 TFragmentary Witnesses L
19.2 Linking the Apparatus tothe Text
19.2.1 The Location-referenced Method
19.2.2 The Double End-Point Attachment Method
19.2.3 The Parallel Segmentation Method
19.3 Using Apparatus Elements in Transcriptions

20 Names and Dates
20.1 Personal Names
20.2 Place Names e
20.2.1 Geo-political Place Names
20.2.2 GeographicNames
20.2.3 Relative Place Names
20.3 Organization Names it
20.4 Datesand Time e
20.4.1 Absolute Datesand Times
20.4.2 Relative Datesand Times

21 Graphs, Networks, and Trees
21.1 Graphsand Digraphs L L
21.1.1 Transition Networks,
21.1.2 Family Trees00
21.1.3 Historical Interpretation L.
21.2 Trees e e
21.3 Another Tree Notation

22 Tables, Formulae, and Graphics
22.1 Tables
22.1.1 The TEI Table DTD
22.1.2 Other Table DTDs
22.2 Formulae
22.3 Specific Elements for Graphic Images
22.4 Overview of Basic Graphics Concepts
22.5 GraphicImage Formats L L Lo
22.5.1 Vector Graphic Formats
22.5.2 Raster Graphic Formats o 0oL
22.5.3 Photographic and Motion Video Formats

23 Language Corpora
23.1 Varieties of Composite Text 0 Lo

vii

CONTENTS

viil

24

25

26

27

23.2 Contextual Information00 Lo
23.2.1 The Text Description,
23.2.2 The Participants Description L.
23.2.3 The Setting Description

23.3 Associating Contextual Informationwitha Text
23.3.1 Combining Corpus and Text Headers
23.3.2 Declarable Elements 0 00 L.
23.3.3 Summary

23.4 Linguistic Annotation of Corpora
23.4.1 Levelsof Analysis

23.5 Recommendations for the Encoding of Large Corpora

Auxiliary Document Types

The Independent Header

24.1 Definition and Principles for Encoders 0 0.
24.2 Required and Recommended Tags
24.3 Header Elements and their Relationship to the MARC Record
24.4 MARC Fields for the File Description
24.5 MARC Fields for the Encoding Description
24.6 MARC Fields for the Profile Description
24.7 MARC fields for the Revision Description
24.8 Structure of the DTD for Independent Headers

Writing System Declaration
25.1 Overall Structure of Writing System Declaration
25.2 Identifying the Language
25.3 Describing the Writing System L
25.4 Documenting the Character Set and Its Encoding
25.4.1 Base Componentsofthe WSD
25.4.2 Exceptionsinthe WSD L.
25.4.3 Documenting Coded Character Sets and Entity Sets
25.4.4 Documenting Transliteration Schemes
25,5 Notesinthe WSD L0000
25.6 Linkage between WSD and Main Document
25.7 Predefined TEIWSDso o
25.8 Details of WSD Semantics L oo
25.8.1 WSD Semantics: General Principles L.
25.8.2 Semantics of WSD Base Components
25.8.3 Multiple Base Components
25.8.4 Semantics of Exceptions Lo oL
25.8.5 Merger of Form and Character Elements

Feature System Declaration

26.1 Linking a TEI Text to Feature System Declarations
26.2 The Overall Structure of a Feature System Declaration
26.3 Feature Declarations L
26.4 Feature Structure Constraints L
26.5 A Complete Example L

Tag Set Documentation

27.1 The TagDoc Documentation Element
27.1.1 The AttList Documentation Element

27.2 Element Classes

27.3 Entity Documentation Lo

557

359
359
560
564
564
567
567
367
568

571
371
373
374
376
376
5377
381
381
581
582
582
583
583
584
584
585
587

589
589
392
593
296
598

CONTENTS

VI Technical Topics

28 Conformance
28.1 Definitionsof Terms L
28.1.1 TEI-Conformant Document
28.1.2 TEI Local Processing Format
28.1.3 TEI Interchange Format
28.1.4 TEI Packed Interchange format
28.1.5 TEI Recommended Practice
28.1.6 TEI Abstract Model
28.2 Modifications to TEI SGML Declaration
28.3 Modifications to TEI Document Type Declarations
28.4 TEI Processing Model
28.4.1 Document Capture and Reclamation
28.4.2 Local Storage Format and Application Software
28.4.3 Enrichment and Other Processing
2844 DataExport
28.4.5 Datalmport L
28.4.6 TEI Conformance in the Processing Model
28.5 Aspects of Conformance and Document Description
28.5.1 Character Sets
28.5.2 SGML Declaration
28.5.3 SGML Document Type Declaration
28.5.4 Tag Usage and Feature Marking
28.5.5 Non-SGMLMarkup

29 Modifying the TEI DTD
29.1 Kinds of Modification
29.1.1 Suppressing Elements L oo
29.1.2 Renaming Elements
29.1.3 Class Extension
29.14 Newcontentmodels. L Lo 0
29.2 Documenting the Modifications L L.

30 Rules for Interchange
30.1 Negotiated Interchange L L.
30.2 Some Simple Examples L Lo
30.3 Non-Negotiated Interchange
30.4 Notes for Implementors Lo L

31 Multiple Hierarchies
31.1 Concurrent Markup of Multiple Hierarchies
31.2 Boundary Marking with Milestone Elements
31.3 Fragmentation of Elements
31.4 Reconstitution of Virtual Elements
31.5 Multiple Encodings of the Same Information
31.6 Concurrent Markup for Pagesand Lines

32 Algorithm for Recognizing Canonical References

VII Alphabetical Reference List of Tags and Attributes
33 Element Classes

34 Entities

609

611
611
611
611
612
612
612
613
613
613
614
614
614
615
615
615
615
616
616
616
616
617
617

619
621
621
622
623
624
624

627
627
628
629
630

633
634
634
635
636
637
637

641

645
647

685

X

CONTENTS

35 Elements 705
VIII Reference Material 981
36 Obtaining the TEI DTD 983
37 Obtaining TEI WSDs 985
38 Sample Tag Set Documentation 987
38.1 Tag Documentation for the TEI P Element 987
38.2 Tag Documentation for the TEIHI Element 988
38.3 Tag Documentation for the TEI Div Element 989
38.4 Class Documentation for the TEI Divn Class 991
39 Formal Grammar for the TEI-Interchange-Format Subset of SGML 993
39.1 Notation o v e e e e 993
39.2 Grammar for SGML Document (Overview) 994
39.3 Grammar for SGML Declaration 994
39.4 Grammarfor DTD 997
39.5 Grammar for Document Instance 1000
39.6 Common Syntactic Constructso 1001
39.7 Lexical Scanner 1002
39.8 Differences from ISO 8879 1004

In memoriam
Donald E. Walker
22 November 1928 - 26 November 1993

CONTENTS

Xil

Note

These Guidelines are the result of over five years’ effort by members of the research and
academic community within the framework of an international cooperative project called the
Text Encoding Initiative (TEI), established in 1987 under the joint sponsorship of the Association
for Computers and the Humanities, the Association for Computational Linguistics, and the
Association for Literary and Linguistic Computing,

The impetus for the project came from the humanities computing community, which sought
a common encoding scheme for complex textual structures in order to reduce the diversity
of existing encoding practices, simplify processing by machine, and encourage the sharing of
electronic texts. It soon became apparent that a sufficiently flexible scheme could provide
solutions for text encoding problems generally. The scope of the TEI was therefore broadened to
meet the varied encoding requirements of any discipline or application. Thus, the TEI became
the only systematized attempt to develop a fully general text encoding model and set of encoding
conventions based upon it, suitable for processing and analysis of any type of text, in any language,
and intended to serve the increasing range of existing (and potential) applications and use.

What is published here is a major milestone in this effort. It provides a single, coherent frame-
work for all kinds of text encoding which is hardware-, software- and application-independent.
Within this framework, it specifies encoding conventions for a number of key text types and
features. The ongoing work of the TEI is to extend the scheme presented here to cover additional
text types and features, as well as to continue to refine its encoding recommendations on the basis
of extensive experience with their actual application and use.

We therefore offer these Guidelines to the user community for use in the same spirit of
active collaboration and cooperation with which they have so far been developed. The TEI
is committed to actively supporting the wide-spread and large-scale use of the Guidelines which,
with the publication of this volume, is now for the first time possible. In addition, we anticipate
that users of the TEI Guidelines will in some instances adapt and extend them as necessary to
suit particular needs; we invite such users to engage in the further development of the Guidelines
by working with us as they do so.

Like any standard which is actually used, these Guidelines do not represent a static finished
work, but rather one which will evolve over time with the active involvement of its community
of users. We invite and encourage the participation of the the user community in this process,
in order to ensure that the TEI Guidelines become and remain useful in all sorts of work with
machine-readable texts.

This document was made possible in part by financial support from the U.S. National
Endowment for the Humanities, an independent federal agency; Directorate General XIII of
the Commission of the European Communities; the Andrew W. Mellon Foundation; and the
Social Science and Humanities Research Council of Canada. Direct and indirect support has
also been received from the University of Illinois at Chicago, the Oxford University Computing
Services, the University of Arizona, the University of Oslo, Queen’s University (Kingston, Ont.),
Bellcore (Bell Communications Research), the Istituto di Linguistica Computazionale (C.N.R.)
(Pisa), EDR (the Japan Electronic Dictionary Research Institute, Tokyo), the British Academy,
and Ohio State University, as well as the employers and host institutions of the members of the
TEI working committees and work groups listed in the acknowledgements.

The production of this document has been greatly facilitated by the willingness of many
software vendors to provide us with evaluation versions of their products. Most parts of this text

xiil

have been processed at some time by almost every currently available SGML-aware software
system. In particular, we gratefully acknowledge the assistance of the following vendors:

o Berger-Levrault AIS s.a. (for Balise).

e E2S n.v. (for E2S Advanced SGML Editor)

e FElectronic Book Technology (for DynaText),

e SEMA Group and Yard Software (for Mark-It and Write-It),

e Software Exoterica (for CheckMark and Xtran),

o SoftQuad, Inc., (for Author/Editor and RulesBuilder),

e Xerox Corporation (for Ventura Publisher)

Details of the software actually used to produce the current document are given in the
colophon at the end of the work.

Xiv

Acknowledgments

Many people have given of their time, energy, expertise, and support in the creation of this
document; it is unfortunately not possible to thank them all adequately. Below are listed those
who have served as formal members of the TEI’s Work Groups and Working Committees during
its six-year history; others not so officially enfranchised also contributed much to the quality of
the result.

The editors take this opportunity to acknowledge our debt to those who have patiently
endured and corrected our misunderstandings of their work; we hope that they will feel the wait
has not been in vain. For any errors and inconsistencies remaining, we must accept responsibility;
any virtue in what is here presented, we gladly ascribe to the energies of the keen intellects listed
below.

C. M. Sperberg McQueen and Lou Burnard

TEI Working Committees (1990-1993)

Note: Not all members listed were able to serve throughout the development of the Guidelines.

1. Committee on Text Documentation:
Chair: Dominik Wujastyk (Wellcome Institute for the History of Medicine)
Members 1990-1992: J. D. Byrum (Library of Congress); Marianne Gaunt (Rutgers Univer-
sity); Richard Giordano (Manchester University); Barbara Ann Kipfer (Independent Con-
sultant); Hans Jorgen Marker (Danish Data Archive, Odense); Marcia Taylor (University of
Essex);

2. Committee on Text Representation
Chair: Stig Johansson (University of Oslo)
Members 1990-1992: Roberto Cencioni (Commission of the European Communities); David
R. Chesnutt (University of South Carolina); Robin C. Cover (Dallas Theological Seminary);
Steven J. DeRose (Electronic Book Technology Inc); David G. Durand (Boston University);
Susan M. Hockey (Oxford University Computing Service); Claus Huitfeldt (University of
Bergen); Francisco Marcos-Marin (University Madrid); Elli Mylonas (Harvard University);
Wilhelm Ott (University of Tiibingen); Allen H. Renear (Brown University); Manfred Thaller
(Max-Planck-Institut fiir Geschichte, Gottingen)

3. Committee on Text Analysis and Interpretation
Chair: D. Terence Langendoen (University of Arizona)
Members 1990-1992: Robert Amsler (Bell Communications Research); Stephen Anderson
(Johns Hopkins University); Branimir Boguraev (IBM T. J. Watson Research Center); Nicoletta
Calzolari (University of Pisa); Robert Ingria (Bolt Beranek Newman Inc); Winfried Lenders
(University of Bonn); Mitch Marcus (University of Pennsylvania); Nelleke Oostdijk (University
of Nijmegen); William Poser (Stanford University); Beatrice Santorini (University of Pennsyl-
vania); Gary Simons (Summer Institute of Linguistics); Antonio Zampolli, University of Pisa.

4. Committee on Metalanguage and Syntax
Chair: David T. Barnard (Queen’s University); David G. Durand (Boston University); Jean-
Pierre Gaspart (Associated Consultants and Software Engineers sa/nv); Nancy M. Ide (Vassar
College); Lynne A. Price (Software Exoterica / Xerox PARC); Frank Tompa (University of
Waterloo); Giovanni Battista Varile (Commission of the European Communities).

In addition, the two TEI editors served ex officio on each committee.

XV

xvi

Following publication of the first draft of the TEI Guidelines (P1) in November 1990, a
number of specialist work groups were charged with responsibility for drafting revisions and
extensions, which, together with material already presented in P1, constitute the basis of the
present work.

In addition, many members of the work groups listed below met on three occasions to review
the emerging proposals in detail as members of the TEI Technical Review Committee. These
meetings, held in Myrdal Norway (December 1991), Chicago (June 1992) and Oxford (March
1993), were largely responsible for the technical content and organization of the present work.
Attendants at these meetings are starred in the list below.

TR1 Character sets Chair: Harry Gaylord* (University of Groningen); Syun Tutiya* (Chiba
University).

TR2 Text Criticism Chair: Peter Robinson* (Oxford University); David Chesnutt* (Univer-
sity of South Carolina); Robin Cover* (Dallas Theological Seminary); Robert Kraft (Univer-
sity of Pennsylvania); Peter Shillingsburg (Mississippi State University).

TR3 Hypertext and hypermedia Chair: Steven J. DeRose* (Electronic Book Technologies
Inc); David Durand (Boston University); Edward A. Fox (Virginia State University); Eve
Wilson (University of Kent).

TR4 Formula, Tables, Figures, and Graphics Chair: Paul Ellison* (University of Ex-
eter); Anders Berglund (Independent Consultant); Dale Waldt (Thompson Professional Pub-
lishing).

TR6 Language corpora Chair: Douglas Biber* (University of Northern Arizona); Jeremy
Clear (Birmingham University); Gunnel Engwall (University of Stockholm).

TR9 Manuscripts and Codicology Chair: Claus Huitfeldt* (University of Bergen); Dino
Buzzetti (University of Bologna); Jacqueline Hamesse (University of Louvain); Mary Keeler
(Georgetown University); Christian Kloesel (Indiana University); Allen Renear* (Brown
University); Donald Spaeth (Glasgow University).

TR10 Verse Chair: David Robey* (University of Manchester); Elaine Brennan* (Brown Uni-
versity); David Chisholm (University of Arizona); Willard McCarty (University of Toronto).
TR11 Drama and performance texts Chair: Elli Mylonas* (Harvard University); John

Lavagnino* (Brandeis University); Rosanne Potter (University of Iowa).

TR12 Literary prose Chair Thomas N. Corns* (University of Wales); Christian Delcourt
(University of Liege;).

AIl Linguistic Description Chair: D. Terence Langendoen* (University of Arizona); Stephen
R. Anderson (Johns Hopkins University); Nicoletta Calzolari (University of Pisa); Geoffrey
Sampson* (University of Sussex); Gary Simons* (Summer Institute of Linguistics).

AI2 Spoken text Chair: Stig Johansson* (University of Oslo); Jane Edwards (University of
California at Berkeley); Andrew Rosta (University College London).

AI3 Literary studies Chair: Paul Fortier* (University of Manitoba); Christian Delcourt (Uni-
versity of Liége;); Ian Lancashire (University of Toronto); Rosanne Potter (University of Iowa);
David Robey* (University of Manchester).

AI4 Historical studies Chair: Daniel Greenstein* (University of Glasgow); Peter Denley
(Queen Mary Westfield College, London); Ingo Kropac (University of Graz); Hans Jorgen
Marker (Danish Data Archive, Odense); Jan Oldervoll (University of Tromse); Kevin Schurer
(University of Cambridge); Donald Spaeth (Glasgow University); Manfred Thaller (Max-
Planck-Institut fiir Geschichte, Gottingen). !

AI5 Print dictionaries Chairs: Robert Amsler* (Bell Communications Research) and Nico-
letta Calzolari (University of Pisa); Susan Armstrong-Warwick (University of Geneva); John
Fought (University of Pennsylvania); Louise Guthrie (University of New Mexico); Nancy
M. Ide* (Vassar College); Irank Tompa (University of Waterloo); Carol Van Ess-Dykema
(Department of Defense); Jean Veronis (University of Aix-en-Provence).

AI6 Machine Lexica Chair: Robert Ingria* (Bolt Beranek Newman Inc); Susan Armstrong-
Warwick (University of Geneva); Nicoletta Calzolari (University of Pisa).

AI7 Terminological data Chair: Alan Melby* (Brigham Young University) Gerhard Budin
(University of Vienna); Gregory Shreve (Kent State University); Richard Strehlow (Oak Ridge

!"This Workgroup was jointly sponsored by the Association for History and Computing.

National Laboratory); Sue Ellen Wright (Kent State University).

Advisory Board

Members of the TEI Advisory Board during the life time of the project are listed below, grouped
under the name of the organization represented.

American Anthropological Association: Chad McDaniel (University of Maryland).
American Historical Association: Elizabeth A. R. Brown (Brooklyn College, CUNY).
American Philological Association: Jocelyn Penny Small (Rutgers University).
American Philosophical Association: Allen Renear (Brown University).

American Society for Information Science: Clifford A. Lynch (University of California).

Association for Computing Machinery, Special Interest Group for Information Retrieval:

1989-93: Scott Deerwester (University of Chicago); 1993- : Martha Evens (Illinois Institute of
Technology).

Association for Documentary Editing: David Chesnutt (University of South Carolina).

Association for History and Computing: 1989-91: Manfred Thaller, Max-Planck-Institut
fit Geschichte, Gottingen; 1991- : Daniel Greenstein (Glasgow University).

Association Internationale Bible et Informatique 1989-93: Wilhelm Ott (University of
Tiibingen); 1993- : Winfried Bader (University of Tiibingen).

Canadian Linguistic Association: Anne-Maria di Sciullo (Université du Québec a Mon-
tréal).

Dictionary Society of North America: Barbara Ann Kipfer (independent consultant).

AAP Electronic Publishing Special Interest Group: 1989-92: Betsy Kiser (OCLC); 1992-
: Deborah Bendig and Andrea Keyhani (OCLC).

International Federation of Library Associations and Institutions: J. D. Byrum Jr.
(The Library of Congress).

Linguistic Society of America: Stephen Anderson (The Johns Hopkins University).

Modern Language Association: Randall Jones (Brigham Young University) and Ian Lan-
cashire (University of Toronto).

Steering Committee Membership

Members of the Steering Committee of the TEI during the preparation of this work were:
Association for Computational Linguistics:
1987-1993: Robert A. Amsler (Bell Communications Research);
1987-1993: Donald E. Walker (Bell Communications Research);
1993- : Susan Armstrong-Warwick (University of Geneva);
1994- : Judith Klavans (Columbia University).
Association for Computers and the Humanities:
e 1987-: Nancy M. Ide (Vassar College);
e 1987-1994: C. M. Sperberg-McQueen (University of Illinois at Chicago);
e 1994- : David Barnard (Queen’s University).

Association for Literary and Linguistic Computing:

e 1987-: Susan M. Hockey (Center for Electronic Texts in the Humanities);
e 1987-: Antonio Zampolli (University of Pisa).

xvil

xviil

Changes from TEI P1 to TEI P3

This list gives a partial indication of the major changes from Versions 1 and 2 of these Guidelines
(issued by the TEI as drafts under the document numbers TEI P1 and TEI P2, the latter released
in chapters between March 1992 and the end of 1993) to the current text.

Chapter 1 (‘About These Guidelines’) on p. 5: this chapter corresponds to chapter 1 of TEI
P1 and TEI P2; it has been reorganized, revised, and expanded, and a new section explaining
the notational conventions of this document has been added.

Chapter 2 (‘A Gentle Introduction to SGML) on p. 15: this is a slightly revised version of
chapter 2 of TEI P1 and P2. Brief discussions of parameter entities and marked sections have
been added, but no other changes of substance have been made.

Chapter 3 (‘Structure of the TEI Document Type Definition’) on p. 35: this chapter was
introduced in TEI P2; the lists of classes and important parameter entities have been updated,
and some declarations have been reordered; no other changes have been made.

Chapter 4 (‘Characters and Character Sets’) on p. 71: this chapter corresponds to some
material in chapter 3 of TEI P1, but presents it in what is hoped to be a more accessible form.
No substantive changes have been made since its publication as part of TEI P2.

Chapter 5 (‘The TEI Header’) on p. 77: this is a revised and much expanded version
of chapter 4 of TEI P1. The overall structure of the TEI header has been retained, but
most of the elements have been renamed to match a new set of naming conventions. The
<encoding.declarations> element of TEI P1 has been split into the <encodingDesc> and
<profileDesc> elements, the former concentrating on the process by which the electronic text
has been encoded, the latter on the non-bibliographic characteristics of the text itself. A number
of specialized declarations have been added to both these sections of the header, in order to allow
the formal specification of important information about the text and its encoding

Chapter 6 (‘Elements Available in All TEI Documents’) on p. 119: this chapter corresponds
to sections 5.3 to 5.6, portions of 5.7, and 5.8 of the first public draft of these Guidelines (TEI
P1). Changes made to this material in this version include:

e The individual sections have been reordered and reorganized.

e Highlighting and quotation marks are treated together.

e The tags for names and dates have been revised, and a separate additional tag set has been
provided for detailed analysis of names and dates (chapter 20 (‘Names and Dates’) on p. 487).

e The tags for simple editorial interventions have been revised; the new set includes several
complementary pairs of elements, so that the encoder is consistently given the choice of
recording the original text, or an editorial modification of it, as data content, and the other as
an optional attribute value.

o The tags for bibliographic references have been renamed (from <citn> to <bibl>, etc.) and a
new form (<biblFull>), corresponding to the structure of the TEI header, has been added.

e The treatment of canonical reference systems has been thoroughly revised and the discussion
is now supplemented by discussions in chapter 5 (‘The TEI Header’) on p. 77, and chapter 32
(‘Algorithm for Recognizing Canonical References’) on p. 641.

Chapter 7 (‘Default Text Structure’) on p. 183: this chapter corresponds to section 5.2 of TEI
P1. Changes made to this material in this version include:

e The theoretical discussion of alternative methods of constructing a tag set for overall text
structure has been suppressed.
o The tags for elements of a title-page have been renamed.

XIX

XX

o The specialized tags for divisions of front matter and back matter (<foreword>, <acknowl-
edgements>, <dedication>, <colophon>, etc.) have been deleted; like those of the text
body, these elements may be tagged with generic <div> elements.

e In addition to numbered <div> elements, the current draft also allows for un-numbered
generic <div>s.

o The treatment of collections and anthologies is explicitly discussed, building on section 7.2 of
TEI P1, and the <group> element is introduced to deal with them.

Chapter 8 (‘Base Tag Set for Prose’) on p. 211, chapter 9 (‘Base Tag Set for Verse ’) on p. 213,
and chapter 10 (‘Base Tag Set for Drama’) on p. 227: these correspond to the subparts of section
7.3 of TEI P1, but have been completely redesigned and rewritten from scratch.

Chapter 11 (‘“Transcriptions of Speech’) on p. 249: this chapter first appeared in TEI P2; it has
been revised here to match changes in the overall design of the Guidelines since its publication.
Most importantly, this tag set now uses the default text-structure elements described in chapter 7
(‘Default Text Structure’) on p. 183, and the methods for handling overlap and other time-specific
information have been revised to make use of the techniques described in chapter 14 (‘Linking,
Segmentation, and Alignment’) on p. 331.

Chapter 12 (‘Print Dictionaries’) on p. 269: the tag set presented in this chapter is a complete
revision of that described in section 7.4 of TEI P1, and the chapter itself was entirely rewritten
from scratch.

Chapter 13 (“Terminological Databases’) on p. 311: this chapter was first published in
December, 1993, as part of TEI P2. Since that publication, it has been revised slightly for the
sake of consistency with the rest of the Guidelines and with the work of Technical Committee 37
of the International Organization for Standardization (ISO) on ISO DIS 12 200.

Chapter 14 (‘Linking, Segmentation, and Alignment’) on p. 331: this chapter corresponds
to sections 5.7 (“Links and Cross References”) and sections 6.2.3 through 6.2.5 (“Alignment of
Multiple Analyses,” etc.) of TEI P1. Changes made to this material in this version include:

e The <xref> clement of P1 has been split into the two elements <ptr> and <xptr>, of which
the former is used to point at IDs within the document and the latter for pointing outside the
document or for pointing at passages without IDs in the current document.

e The elements <ref> and <xref> have been added to provide pointer elements which can
accept character content, for cases in which the pointing phrase of the source text cannot be
reconstructed algorithmically.

e The “extended pointer syntax” has been substantially revised and systematized; the syntax
and semantics of extended pointers have been defined more precisely.

e The <unit> and <level> elements defined by P1 for implicit alignment of multiple levels of
analysis have been dropped; in their stead, the revised feature structure elements should be
used. These are defined in chapter 16 (‘Feature Structures’) on p. 397.

e The elements <alignment>, <al.map>, <al.ptr>, <al.list>, <al.range>, defined in P1 for
explicit alignment of multiple texts or analyses, have been replaced by the <link>, <linkGrp>,
<corresp> and <correspGrp> elements. Because the <link> and <corresp> elements can
point at multiple targets, there is no need for special alignment pointers, alignment lists, or
alignment range elements.

e The elements <link> and <correspond> may be used in connection with <Xptr> to align
elements in external entities or passages which do not bear SGML identifiers.

Since the publication of this chapter in TEI P2, it has been revised, the section on alternation
has been added, new examples have been introduced, and the extended pointer syntax has been
revised. The extended pointer syntax is now also used to specify canonical reference systems, as
well as in the <xptr> and <xref> clements.

Chapter 15 (“Simple Analytic Mechanisms’) on p. 381: the bulk of this chapter is new, though
some parts of its substance derive from chapter 6 of TEI P1. The global ana and inst attributes
have been added, to simplify the notation for simple forms of alignment between text and
analyses; the elements and <interp> have been introduced, to simplify the specification
of analyses which do not require the structural rigor of feature structures.

Chapter 16 (‘Feature Structures’) on p. 397: this chapter derives from sections 6.2.1 and 6.3
of TEI P1. In its broad outlines, the feature structure notation introduced there is retained. The

most important changes include these:

e Some clements have been renamed.

o Feature names and feature structure names are now represented as attribute values, rather
than as embedded subelements.

o The treatment of Boolean logic has been substantially changed.

Chapter 17 (‘Certainty and Responsibility’) on p. 435: this chapter was introduced in TEI
P2; its wording has been revised slightly since then, but the tags described remain the same.

Chapter 18 (“Transcription of Primary Sources’) on p. 443: this chapter presents new
material on the use of the core tags for editorial intervention, and on specialized problems in
the transcription of primary source material, especially manuscripts.

Chapter 19 (‘Critical Apparatus’) on p. 467: this chapter is a substantial revision of section
5.10 (“Critical Apparatus”) of TEI P1. The major changes include the following:

e The single end-point attachment method of encoding critical apparatus has been dropped.

e A new method of apparatus encoding, the location-referenced method, has been introduced
to simplify the transcription of existing critical editions.

e The problem of subvariation is treated more explicitly.

e The <witList> element has been introduced for the purpose of identifying all the witnesses
whose readings are recorded in the apparatus.

e The treatment of detailed information about a particular reading in a particular witness (in
the <witDetail> element) has been changed somewhat.

Chapter 20 (‘Names and Dates’) on p. 487: this chapter is new in this version.

Chapter 22 (‘Tables, Formulae, and Graphics’) on p. 523: this chapter replaces section 5.9
of TEI P1; it provides small but usable tag set for tables, and describes in much more detail the
process of including graphical information (figures, illustrations, etc.) in TEI-encoded texts.

Chapter 23 (‘Language Corpora’) on p. 537: this chapter builds on section 7.2 of TEI
P1, but its contents are largely new. The tag set described here provides much fuller methods
for documenting text type, subject area, and demographic characteristics of speakers, listeners,
authors, etc. associated with the texts of a corpus.

Chapter 24 (“The Independent Header’) on p. 559: this chapter was introduced in TEI P2; it
has been slightly revised since.

Chapter 25 (‘Writing System Declaration’) on p. 571: this chapter derives from the writing
system declaration described in chapter 3 (“Characters and Character Sets”) of TEI P1. The
structure of the WSD has been changed slightly, and the chapter now gives an explicit account
of the semantics of specifying base character sets, entity sets, or WSDs, and of modifying them
using the <exceptions> element.

Chapter 26 (‘Feature System Declaration’) on p. 589: this chapter is new in this version of
these Guidelines.

Chapter 27 (“Tag Set Documentation’) on p. 601: this chapter first appeared in TEI P2; it
has not changed substantially since.

Chapter 28 (‘Conformance’) on p. 611, chapter 29 (‘Modifying the TEI DTD’) on p. 619,
chapter 30 (‘Rules for Interchange °) on p. 627, chapter 31 (‘Multiple Hierarchies’) on p. 633, and
chapter 32 (‘Algorithm for Recognizing Canonical References’) on p. 641: these chapters are all
new in the current version of these Guidelines (though the mechanisms of modifying the TEI
DTDs described in chapter 29 (‘Modifying the TEI DTD’) on p. 619 remain the same as those
described in chapter 8 of TEI P1). The definition of conformance provided in this version of
these Guidelines differs from that of TEI P1 primarily in making more explicit the nature of the
requirement that extensions to the tag set be documented, in specifying the nature of the DTD
modifications allowed in TEI-conformant documents, and in completely divorcing the issue of
TEI-conformance from that of the character sets used in the document.

The alphabetical reference list of classes, entities, and elements was introduced in TEI P2; in
this version, slightly fuller information is given. For element classes, lists of members are given
which include members of all subclasses, and the declarations of the a-dot and m-dot parameter
entities for the class are reproduced. The files in which entities and elements are declared are
also given.

Chapter 39 (‘Tormal Grammar for the TEI-Interchange-Format Subset of SGML") on p. 993:
this chapter appeared in TEI P2 and has not been revised for this version of these Guidelines.

Part I

Introduction

Chapter 1

About These Guidelines

These Guidelines have been developed by the Text Encoding Initiative (TEI); see 1.3 (‘Historical
Background’) on p. 12. They are addressed to anyone who works with any text in electronic
form. They provide means of representing those features of a text which need to be identified
explicitly in order to facilitate processing of the text by computer programs. In particular, they
specify a set of markers (or tags) which may be inserted in the electronic representation of the
text, in order to mark the text structure and other textual features of interest. Without such
explicit markers, many important features remain difficult to locate by mechanical means such as
computer programs, and thus difficult to process effectively. The process of inserting such explicit
markers for implicit textual features is often called “markup” or “tagging”, and the term encoding
scheme or markup language denotes the rules which govern the use of markup in a set of encodings.

The Guidelines formulated in this document are intended for use in interchange between
individuals and research groups using different programs and computer systems over a broad
range of applications. Since they contain an inventory of the features most often found useful
for text processing, the Guidelines also provide help to those creating texts in electronic form.
They can also be used for the local storage of text which is to be processed with multiple software
packages requiring different input formats. The Guidelines apply to texts in any natural language,
of any date, in any literary genre or text type, without restriction on form or content. They treat
both continuous materials (“running text”) and discontinuous materials such as dictionaries and
linguistic corpora. Though principally directed to the needs of the scholarly research community,
the Guidelines are not restricted to esoteric academic applications. They should also be useful
for librarians who maintain and document electronic materials, as well as for publishers and
others creating or distributing electronic texts. Although they focus on problems of representing
in electronic form texts which already exist in traditional media, these Guidelines should also
be useful for the creation of electronic texts. They are adequate to, but not limited by, existing
practices.

The rules and recommendations made in the these Guidelines conform to ISO 8879, which
defines the Standard Generalized Markup Language (SGML), and make reference to ISO 646,
which defines a standard seven-bit character set in terms of which the recommendations on
character-level interchange are formulated. For more information on SGML see chapter 2 (‘A
Gentle Introduction to SGML) on p. 15. This document provides the authoritative statement of
the requirements and usage of the TEI encoding scheme. Although it includes numerous small
examples, it must be stressed that it is intended as a reference manual and that readers unfamiliar
with SGML or text markup in general will find it difficult to learn the encoding scheme by
reading this document alone. This document will be complemented by a series of tutorials in text
encoding (document TEI U1 et seq.) and a case book of extended examples with discussion of the
rationale for various markup choices (TEI T1). ! Readers seeking an introduction to text markup
and the use of the TEI encoding scheme in a specific area should consult an appropriate tutorial;

'"TEI documents bear identifying numbers which indicate the provenance of the document (here simply “TEI”, in
other cases the TEI work group number, e.g. “TEI AI5”), the type of document (here “U” and “I”, meaning ‘users’
guide’ or ‘users’ manual’ and ‘sample text(s)’), and a sequential number. The TEI document number of the document in
hand is TEI P3 (for “TEI public proposal number 3°).

1.1

STRUCTURE AND NOTATIONAL CONVENTIONS OF THIS DOCUMENT

those already familiar with the scheme and interested in seeing examples of its application should
consult the case book. The remainder of this chapter comprises three sections. The first gives an
overview of the structure and notational conventions used throughout the document. The second
enumerates the design principles underlying the TEI scheme and the application environments
in which it may be found useful. Finally, the third section gives a brief account of the origins and
development of the Text Encoding Initiative itself.

1.1 Structure and Notational Conventions of this
Document

1.1.1 Structure

Part I provides some relevant background information about the Guidelines themselves (in this
chapter); a brief technical review of SGML (chapter 2 (‘A Gentle Introduction to SGML ’°) on
p- 15); and a description of how the TEI document type definition (DTD) is organized (chapter 3
(‘Structure of the TEI Document Type Definition’) on p. 35).

Part II provides a systematic treatment of issues common to all text types: character
representation (chapter 4 (‘Characters and Character Sets’) on p. 71); in-file documentation
of the text (chapter 5 ("The TEI Header’) on p. 77); tags for text features found in all sorts of
text: lists, notes, emphasis, quotations, cross-references, technical terms, names, dates, numbers,
etc. (chapter 6 (‘Elements Available in All TEI Documents’) on p. 119); and a definition for
the default structure of all TEI documents (chapter 7 (‘Default Text Structure’) on p. 183). Part
III documents various base tag sets: these include specialized tags for prose, for verse, for drama
and other performance materials, for spoken materials, as well as for letters and memoranda,
printed dictionaries, and terminological data. Additional sections discuss user-defined and mixed
base tag sets. An instance of the TEI DTD must use one and only one base tag set, unless
one of the “mixed” bases i1s used. Part IV documents various additional tag sets, which may be
included or excluded, as appropriate. Topics covered include a variety of approaches to the
analysis and interpretation of texts, and include representations for hypertextual links and other
non-hierarchic structures, as well as specialized tags for the encoding of critical editions and
language corpora.

Part V defines certain specialized auxiliary document types, used to encode information about
the way that texts have been encoded, specifically: the TEI header regarded as a distinct
document; the TEI Writing System Declaration; the Feature System declaration; and the Tag Set
Documentation. Part VI contains a number of technical discussions of a more specialist interest.
Topics covered include the notion of formal conformance to the TEI Guidelines; the controlled
user-modification of the TEI DTD; practical aspects of the use of TEI markup both in local
processing and in interchange; and the relationship of TEI markup to other markup standards.
Part VII consists of an alphabetical reference list of all elements and element classes defined in the
TEI encoding scheme. Part VIII provides further reference material: specifically, a description
of how to obtain current versions of the full TEI DTDs and the set of standard Writing System
Declarations, a sample Feature System Declaration for basic grammatical annotation, sample
tag documentation, and a formal grammar for the subset of SGML used in the TEI interchange
format. In the back matter, a bibliography lists works cited in the text of the Guidelines. A
mechanically generated index is also provided, which can serve, it is hoped, as a finding aid for
the use of the Guidelines.

1.1.2 Notational Conventions

This section describes the typographic and stylistic conventions used throughout this document.
The use of many terms and concepts which have not yet been defined is unavoidable in this
section. All such terms and concepts will be explained in later chapters of Part I.

When SGML elements are mentioned in the text, the mentions take the form <name>,
where “name” is the generic wdentifier of the element. Sample tags mentioned in the text are

1.1.2 NOTATIONAL CONVENTIONS

displayed in the form <name att=value att2="value two’>. References to SGML attributes
take the form attname, where “attname” is the name of the attribute. Where the elements and
attributes thus mentioned are part of the TEI encoding scheme, they are included in the index.
These Guidelines distinguish encoding practices, and SGML elements, which are required,
recommended, or optional. The phrases “must”, “is required to”, etc., mark practices and tags
which are required for TEI conformance. The phrases “should”, “it is recommended that”,
“it 1s preferable to ...”, etc., are used in describing practices which are recommended but not
required for TEI conformance. Modal verbs like “may”, “might”, etc., mark practices which
are strictly optional. Qualifying phrases like “if desired”, “where appropriate”, or “under some
circumstances” are used when some tag or practice described may be desirable or acceptable
under some circumstances and not under others. In the reference section in Part VII, elements
and their attributes are all classed as one of:

required unconditionally required in a TEI-conformant document

mandatory when applicable required under the appropriate conditions; may be omitted if
not applicable

recommended recommended unless there are good reasons, in the given circumstances,
against it

recommended when applicable recommended under some circumstances (which should
be clear from context)

optional strictly optional

This reference section includes cross-references to the chapter or section of the main text
within which each element is discussed. Most sections of the main text in which elements are
defined begin with a descriptive list of the elements concerned in the following format:

<tag> short description of the element marked by <tag>. Where appropriate this is followed
by a list of significant non-global attributes for the element as follows:
attribute description of the attribute’s meaning or usage, optionally followed by a list of
suggested or legal values:
valuel meaning of valuel
value2 meaning of value2

Not all attributes are always included in these lists; those which are shared with other elements
in a class are usually listed separately, and those of relatively specialized interest are usually listed
only in the reference section. The values of the attribute are introduced with one of the following
formulaic phrases:

Legal values include: The attribute cannot take values other than those given. Other values
will cause SGML parsing errors. (This is used relatively rarely in these Guidelines.)

Suggested values include: The values listed constitute a set which should suffice for most
purposes, and they should be used where appropriate. Developers of TEI-aware software
should ensure that their software can process these values appropriately. In some cases,
however, it is conceivable that other values might be necessary, so the SGML declaration
for the attribute does not restrict legal values to those given. TEI-aware software should have
reasonable fallback processing for values not in the list.

Sample values include: The attribute can take any value; those listed are provided simply as
examples of the kind of value possible.

Each list of elements 1s followed by some discussion of its semantics and usage, followed by one or
more examples, taken wherever possible from real texts, and presented in the following format:

<p>This paragraph contains an <hi rend=it>italicized phrase</hi>

All the examples are (or should be) legal SGML, but, because they are fragmentary, may not
be parseable by SGML parsers without the required context. They also frequently make liberal
use of white space to exhibit the logical structure of the SGML coding more clearly. Although
this does not affect the SGML conformance of the examples, some users will prefer not to follow
it in practice, since not all processors will ignore the extra white space. Examples may:

e show full start- and end-tags for all elements
e use empty end-tags (of the form </>) to close the most recently opened element

1.2 UNDERLYING PRINCIPLES AND INTENDED USE

e omit end-tags (never start-tags) where they may legally be omitted; where this is done, it is
normally mentioned in the accompanying text

Attribute values are given indifferently in single quotes or double quotes; unquoted attribute
values are sometimes used where SGML requires no quotation marks. It should be noted that
the examples demonstrate a variety of tagging styles, mostly aimed at making the tagging legible
while also showing fairly explicitly where all elements begin and end. No claim is made or implied
as to the appropriateness of the style adopted here for other purposes; in particular, those using
SGML for local processing may often prefer to use empty end-tags more frequently than is shown
in the examples, or to omit end-tags.

After the examples and usage notes, each section typically concludes with a DTD fragment
containing the formal declarations for the elements described. Each DTD fragment is given a
heading, and may contain element and attribute list declarations, entity declarations, parameter
entity references, comments, and references to DTD fragments in other sections. The DTD
fragments of a single chapter almost invariably belong to the same DTD file, the structure of
which is typically described (with references to the included fragments) in one of the first or last
sections of the chapter. The DTD fragments are identical to the DTDs distributed with these
Guidelines, with the following exceptions:

o In the text, the DTD fragments appear in an order dictated by organization of this document;
the actual DTD files may re-order the material slightly. This is indicated in the text by
references from one DTD fragment to another.

e The DTD fragments in the text show the generic identifiers of all elements using the standard
English names assigned in this document; the actual DTD files use parameter entities for all
generic identifiers, so that elements can be conveniently renamed, as described in chapter 29
(‘Modifying the TEI DTD’) on p. 619.

e The actual DTD files include conditional marked sections surrounding the element and
attribute list declaration for each element, to ensure that elements can conveniently be
suppressed or redefined, as described in chapter 29 (‘Modifying the TEI DTD’) on p. 619. The
fragments in the text suppress the marked-section-open and marked-section-close markup.

What appears in the text, therefore, as:
<IELEMENT blort - O (farble+)>
will appear thus in the actual DTD file:

<I[%blort [
<IELEMENT %n.blort - O ((%n.farble)+)>
11>

For further discussion, see chapter 3 (‘Structure of the TEI Document Type Definition’) on
p- 35, or chapter 29 (‘Modifying the TEI DTD’) on p. 619.

1.2 Underlying Principles and Intended Use

1.2.1 Design Principles of the TEI Scheme

The planning conference held at Vassar College in November, 1987 (see section 1.3 (‘Historical
Background’) on p. 12) agreed on a number of principles concerning the basic design goals of
the Text Encoding Initiative. These principles are expounded in various documents of the TEI
(notably TEI ED P1 and TEI ED P2) and the interested reader is directed to those documents
for further discussion.

Because of its roots in the humanistic research community, the TEI scheme is driven by its
original goal of serving the needs of research, and is therefore committed to providing a maximum
of comprehensibility, flexibility, and extensibility. More specific design goals of the TEI have been
that the Guidelines should:

e provide a standard format for data interchange
e provide guidance for encoding of texts in this format

1.2.1 DESIGN PRINCIPLES OF THE TEI SCHEME

e support the encoding of all kinds of features of all kinds of texts studied by researchers
be application independent

This has led to a number of important design decisions, such as:

the choice of SGML and ISO 646

the provision of a large predefined tag set

a distinction between required, recommended, and optional encoding practices
encodings for different views of text

alternative encodings for the same text features

mechanisms for user-defined extensions to the scheme

These goals and principles are expounded in more detail below. The goals of creating
a common interchange format which is application independent require the definition of a
specific markup syntax as well as the definition of a large predefined tag set. The syntax of
the recommendations made in this document conforms to the international standard ISO 8879,
which defines the Standard Generalized Markup Language; reference is also made to ISO 646,
which defines a standard seven-bit character set. Full SGML document type declarations are
provided for the scheme described in these Guidelines. The goal of providing guidance for text
encoding requires that recommendations be made as to what textual features should be recorded
in various situations. This mandate 1s fulfilled by the explicit specification, in the reference section
for each tag, that the tag is required, mandatory when applicable but otherwise omissible, recommended
generally, recommended when applicable but not always applicable, or optional. However, the TEI
Guidelines make (with relatively rare exceptions) no suggestions or restrictions as to the relative
importance of textual features. The philosophy of the Guidelines is “if you want to encode this
feature, do it this way” — but very few features are mandatory.

The Guidelines have been written largely with a focus on text capture (i.e. the representation
in electronic form of an already existing copy text in another medium) rather than text creation
(where no such copy text exists). Hence the frequent use of terms like “transcription”, “original”,
“copy text”, etc. However, the Guidelines should be equally applicable to text creation, and the
two terms lext creation and lext capture are often used interchangeably. Concerning text capture
the TEI Guidelines do not specify a particular approach to the problem of fidelity to the source
text and recoverability of the original; such a choice is the responsibility of the text encoder.
The current version of these Guidelines, however, provides a more fully elaborated set of tags
for markup of rhetorical, linguistic, and simple typographic characteristics of the text than for
detailed markup of page layout or for fine distinctions among type fonts or manuscript hands.

In these Guidelines, no hard and fast distinction is drawn between “objective” and “subjec-
tive” information or between “representation” and “interpretation”. These distinctions, though
widely made and often useful in narrow well defined contexts, are perhaps best interpreted as
distinctions between issues on which there is a scholarly consensus and issues where no such
consensus exists. Such consensus has been, and no doubt will be, subject to change. The
TEI Guidelines do not make suggestions or restrictions as to which of these features should
be encoded. The use of the terms descriptive and nterpretive about different types of encoding
in the Guidelines is not intended to support any particular view on these theoretical issues, but
reflects a purely practical division of responsibility between the two committees called Committee
on Text Representation and Committee on Text Interpretation and Analysis. In general, the
accuracy and the reliability of the encoding and the appropriateness of the interpretation is for
the individual user of the text to determine. The Guidelines provide a means of documenting
the encoding in such a way that a user of the text can know the reasoning behind that encoding,
and the general interpretive decisions on which it is based. It is strongly recommended that the
TEI header be used to give an account of these aspects of the encoding. The TEI header is
described in chapter 5 ("The TEI Header’) on p. 77. In many situations more than one view of
a text 1s needed. No absolute recommendation to embody one specific view of text can apply to
all texts and all approaches to them. The syntax of SGML ensures that some encodings can be
ignored for some purposes. To enable encoding multiple views, these Guidelines not only treat a
variety of text features, but they sometimes provide several alternative encodings for what appear
to be identical textual phenomena. These Guidelines therefore offer the possibility of encoding
many different views of the text, simultaneously if necessary. However, the Guidelines are built

1.2 UNDERLYING PRINCIPLES AND INTENDED USE

10

on the assumption that there is a common core of textual features shared by virtually all texts
and virtually all serious work on texts. This core set of tags is defined in Chapter 6 (‘Elements
Available in All TEI Documents’) on p. 119. Beyond this core, many different elements can be
encoded. In brief, the TEI Guidelines define a general-purpose encoding scheme which makes it
possible to encode different views of text, possibly intended for different applications, serving the
majority of scholarly purposes of text studies in the humanities. However, no predefined encoding
scheme can serve all research purposes. Therefore, the TEI also provides means of modifying and
extending the encoding scheme defined by the Guidelines (see chapter 29 (‘Modifying the TEI
DTD’) on p. 619).

1.2.2 Intended Use

We envisage three primary functions for these Guidelines:

o guidance for individual or local practice in text creation and data capture;
e support of data interchange;
e support of application-independent local processing;

These three functions are so thoroughly interwoven in practice that it is hardly possible
to address any one without addressing the others. However, the distinction provides a useful
framework for discussing the possible role of the Guidelines in work with electronic texts.

1.2.2.1 Use in Text Capture and Text Creation

The description of textual features found in the chapters which follow should provide a useful
checklist from which scholars planning to create electronic texts should select the subset of
features suitable for their project. Problems specific to text creation or text “capture” have
not been considered explicitly in this document. For purposes of the TEI interchange format
and for use of SGML, it does not matter how a text is created or captured: it can be typed
by hand, scanned from a printed book or typescript, read from a typesetter’s tape, or acquired
from another researcher who may have used another markup scheme (or no explicit markup at
all). We include here only some general points which are often raised about SGML and the
process of data capture. SGML can appear distressingly verbose, particularly when (as in these
Guidelines) the names of tags and attributes are chosen for clarity and not for brevity. Editor
macros and keyboard shorthands can allow a typist to enter frequently used tags with single
keystrokes. Special-purpose software may be purchased which scans word-processor or scanner
data and inserts SGML tags. SGML-aware software can help with maintaining the hierarchical
structure of the document, and display the document with visual formatting rather than raw tags.
The techniques described in chapter 29 (‘Modifying the TEI D'TD’) on p. 619 may be used to give
shorter names to the tags being used most often. It should also be noted that the examples in this
text are chosen to exhibit the markup as compactly as possible, and thus have denser markup than
will be typical in many texts. The SGML standard provides ways of abbreviating, omitting, or
otherwise minimizing the amount of markup which need be explicitly provided in a text. They are
all forbidden in the TEI interchange format because their use complicates processing; this does
not however preclude their use in local processing, where this is felt appropriate or desirable.

1.2.2.2 Use for Interchange

When the TEI Guidelines are used for interchange, it is expected that researchers using other
encoding schemes in their work will translate outgoing data from such schemes into the scheme
described by these Guidelines, and similarly translate incoming data from the scheme described
here into those used internally. For such translations to be carried out without loss of information,
the scheme proposed here must be as expressive (in a formal sense) as any encoding scheme now
known to be in wide use for textual research. To ensure that this is the case, a set of extension
techniques is provided (see chapter 29 (‘Modifying the TEI DTD’) on p. 619) which makes
possible the addition of extra tags, the renaming of existing tags and certain kinds of redefinition.
Although the intention is to minimize the need for recourse to such extensions, they may be used

1.2.2

INTENDED USE

to accommodate the encoding of new or unanticipated textual features. To translate between any
pair of encoding schemes implies:

1. identifying the sets of textual features distinguished by the two schemes;
2. determining where the two sets of features correspond;
3. creating a suitable set of mappings.

For example, to translate from encoding scheme X into the TEI scheme:

1. Make a list of all the textual features distinguished in X.
2. Identify the corresponding feature in the TEI scheme. There are three possibilities for each
feature:

(a) the feature exists in both X and the TEI scheme;
(b) X has a feature which 1s absent from the TEI scheme;
(c) X has a feature which corresponds with more than one feature in the TEI scheme.

The first case 1s unproblematic. The second requires an extension to the TEI scheme, as
described in chapter 29 (‘Modifying the TEI DTD’) on p. 619. The third requires that a
consistent choice be made. The algorithm used to make that choice should be documented in
the TEI header.

3. Using the table of equivalences so generated, a simple translation can be carried out between
X and the TEL

The ease with which this translation can be carried out will of course depend on the clarity and
explicitness with which scheme X represents the features it encodes.

Translating from the TEI into scheme X follows the same pattern, except that if a TEI feature
has no equivalent in X, and X cannot be extended, information must be lost in translation.
Similar procedures may be followed where the TEI scheme is to be used as an interlanguage
for interchange among several different sites or applications, although the degree of TEI-
conformance may vary. In the simplest case, where two sites or individuals exchanging texts
know each other and know or can inquire what equipment the other is using, these Guidelines
serve primarily as documentation for a file format, which can be referred to without actually
being transmitted together with the file. In the general case, where sender and recipient cannot
communicate such information, a stricter degree of TEI conformance will be required for loss-free
interchange. The rules defining such strict conformance to the Guidelines are given in some
detail in chapter 28 (‘Conformance’) on p. 611. The nterchange format defined there requires that
an electronic text:

1. adhere to the SGML declaration and the SGML document type declarations defined in these
Guidelines, unless modified or extended as described in chapter 29 (‘Modifying the TEI DTD?)
on p. 619. These SGML constructs are further discussed in chapter 2 (‘A Gentle Introduction
to SGML) on p. 15.

2. provide external documentation as described in chapter 27 (“Tag Set Documentation’) on
p- 601 for all elements not defined in these Guidelines, specifying a formal name (generic
identifier) and a corresponding full natural-language name, describing its meaning and usage,
specifying its legal content and also any attributes it may use.

3. adhere to the requirements of the TEI header in providing bibliographic identification of
the text and description of the encoding practices used (as described in chapter 5 (“The TEI
Header’) on p. 77).

Note that the interchange format makes no formal restriction on the character set to be used in
interchange, as this will depend on the medium of interchange and the local character sets in use
by sender and receiver. For further information, refer to chapter 30 (‘Rules for Interchange °) on
p. 627.

1.2.2.3 Use for Local Processing

Machine-readable text can be manipulated in many ways; some users:

o cdit texts (e.g. word processors, syntax-directed editors)
e cdit, display, and link texts in hypertext systems

11

1.3 HISTORICAL BACKGROUND

12

e format and print texts using desktop publishing systems, or batch-oriented formatting pro-
grams

load texts into free-text retrieval databases or conventional databases
unload texts from databases as search results or for export to other software
search texts for words or phrases

perform content analysis on texts

collate texts for critical editions

scan texts for automatic indexing or similar purposes

parse texts linguistically

analyze texts stylistically

scan verse texts metrically

link text and images

These applications cover a wide range of likely uses but are by no means exhaustive. The aim has
been to make the TEI Guidelines useful for encoding the same texts for different purposes. We
have avoided anything which would restrict the use of the text for other applications. We have
also tried not to omit anything essential to any single application.

1.3 Historical Background

The Text Encoding Initiative grew out of a planning conference sponsored by the Association
for Computers and the Humanities (ACH) and funded by the U.S. National Endowment for the
Humanities (NEH), which was held at Vassar College in November 1987. At this conference
some thirty representatives of text archives, scholarly societies, and research projects met to
discuss the feasibility of a standard encoding scheme and to make recommendations for its scope,
structure, content, and drafting. During the conference, the Association for Computational
Linguistics and the Association for Literary and Linguistic Computing agreed to join ACH as
sponsors of a project to develop the Guidelines. The outcome of the conference was this set of
principles, which determined the further course of the project.

1. The guidelines are intended to provide a standard format for data interchange in humanities
research.

2. The guidelines are also intended to suggest principles for the encoding of texts in the same
format.

3. The guidelines should

(a) define a recommended syntax for the format,
(b) define a metalanguage for the description of text-encoding schemes,
(c) describe the new format and representative existing schemes both in that metalanguage
and in prose.
4. The guidelines should propose sets of coding conventions suited for various applications.
5. The guidelines should include a minimal set of conventions for encoding new texts in the
format.
6. The guidelines are to be drafted by committees on

(b) text representation
c) text interpretation and analysis
(d) metalanguage definition and description of existing and proposed schemes,

(a) text documentation
(

coordinated by a steering committee of representatives of the principal sponsoring organiza-
tions.

7. Compatibility with existing standards will be maintained as far as possible.

8. A number of large text archives have agreed in principle to support the guidelines in their
function as an interchange format. We encourage funding agencies to support development
of tools to facilitate this interchange.

9. Conversion of existing machine-readable texts to the new format involves the translation of
their conventions into the syntax of the new format. No requirements will be made for the

1.3.1 ORIGIN AND DEVELOPMENT OF THE TEI

addition of information not already coded in the texts.

In the course of the work, some of these goals assumed greater, some lesser importance; some
proved easier, some harder to achieve. The document in hand does define a standard form for the
interchange of textual material, and adumbrate principles for the creation of new electronic texts.
The only metalanguage used, however, is that of SGML, and no formal definitions are given of
other common encoding schemes. These Guidelines do define a minimal set of conventions
for text encoding (i.e. those SGML elements classed as recommended or required), though few
researchers will be satisfied to encode only what is required or recommended here, since the set of
required and recommended SGML elements is rather small. This document does not, however,
define — at least not explicitly — “sets of coding conventions suited for various applications”,
since consensus on suitable conventions for different applications proved elusive; this remains a
goal for future work.

1.3.1 Origin and Development of the TEI

The Text Encoding Initiative proper began in June 1988 with funding from the NEH, soon
followed by further funding from the Commission of the European Communities, the Andrew
W. Mellon Foundation, and the Social Science and Humanities Research Council of Canada.
Four working committees, composed of distinguished scholars and researchers from both Europe
and North America, were named to deal with problems of text documentation (resulting largely
in chapter 5 (‘The TEI Header’) on p. 77), text representation, text analysis and interpretation
(together responsible for most of what has become parts II, III, and IV), and metalanguage and
syntax issues (largely responsible for part VI). A first draft version (1.0) of the Guidelines was
distributed in July 1990 under the title Guidelines for the Encoding and Interchange of Machine-Readable
Texts, with the TEI document number TEI P1. With minor changes and corrections, this version
was reprinted as version 1.1 in November 1990. Extensive public comment and further work on
areas not covered in version 1 resulted in the drafting of a revised version, TEI P2, distribution of
which began in April 1992. This version includes substantial amounts of new material, resulting
from work carried out by several specialist working groups, set up in 1990 and 1991 to propose
extensions and revisions to the text of P1. The overall organization, both of the draft itself and of
the scheme it describes, was entirely revised and reorganized in response to public comment on
the first draft. In June, 1993, the Advisory Board of the Text Encoding Initiative met to review
the current state of the Guidelines, and recommended the formal publication of the work done
to that time. The present version of the TEI Guidelines, TEI P3, represents a further revision of
all chapters published under the document number TEI P2, and the addition of further chapters.
Although it will be subject to revision and amendment on the basis of practical experience and
public discussion, this version of the Guidelines is published without the label ‘draft’, and marks
the conclusion of the initial development work.

1.3.2 Future Developments

Work on areas still not satisfactorily covered in this manual will continue, and resulting rec-
ommendations will be issued as supplements to the published Guidelines. Work is expected to
continue in at least the following areas:

e linguistic description and grammatical annotation
e historical analysis and interpretation

e base tag sets for further document types

e manuscript analysis and physical description of text

The encoding recommended by this document may be used without fear that future versions of
the TEI scheme will be inconsistent with it in fundamental ways. The TEI will be sensitive, in
revising these Guidelines, to the possible problems which revision might pose for those who are
already using this draft. Wherever consistent with the long-term goals of the project, consistency
with this version will be preserved in future revisions.

13

1.3 HISTORICAL BACKGROUND

14

Chapter 2

A Gentle Introduction to SGML

The encoding scheme defined by these Guidelines is formulated as an application of a system
known as the Standard Generalized Markup Language (SGML). ! SGML is an international
standard for the definition of device-independent, system-independent methods of representing
texts in electronic form. This chapter presents a brief tutorial guide to its main features, for
those readers who have not encountered it before. For a more technical account of TEI practice
in using the SGML standard, see chapter 28 (‘Conformance’) on p. 611; for a more technical
description of the subset of SGML used by the TEI encoding scheme, see chapter 39 (‘Formal
Grammar for the TEI-Interchange-Format Subset of SGML’) on p. 993.

SGML i1s an international standard for the description of marked-up electronic text. More
exactly, SGML is a metalanguage, that is, a means of formally describing a language, in this case, a
markup language. Before going any further we should define these terms.

Historically, the word markup has been used to describe annotation or other marks within a
text intended to instruct a compositor or typist how a particular passage should be printed or laid
out. Examples include wavy underlining to indicate boldface, special symbols for passages to be
omitted or printed in a particular font and so forth. As the formatting and printing of texts was
automated, the term was extended to cover all sorts of special markup codes inserted into electronic
texts to govern formatting, printing, or other processing.

Generalizing from that sense, we define markup, or (synonymously) encoding, as any means
of making explicit an interpretation of a text. At a banal level, all printed texts are encoded in
this sense: punctuation marks, use of capitalization, disposition of letters around the page, even
the spaces between words, might be regarded as a kind of markup, the function of which is to
help the human reader determine where one word ends and another begins, or how to identify
gross structural features such as headings or simple syntactic units such as dependent clauses or
sentences. Encoding a text for computer processing is in principle, like transcribing a manuscript
from scriptio continua, a process of making explicit what is conjectural or implicit, a process of
directing the user as to how the content of the text should be interpreted.

By markup language we mean a set of markup conventions used together for encoding texts. A
markup language must specify what markup is allowed, what markup is required, how markup is
to be distinguished from text, and what the markup means. SGML provides the means for doing
the first three; documentation such as these Guidelines is required for the last.

The present chapter attempts to give an informal introduction—much less formal than the
standard itself—to those parts of SGML of which a proper understanding is necessary to make
best use of these Guidelines.

2.1 What’s Special about SGML?

nternational Organization for Standardization, ISO 8879: Information processing—Text and office systems—Standard
Generalized Markup Language (SGML), ([Geneva]: ISO, 1986).

15

2.1

WHAT’S SPECIAL ABOUT SGML?

16

There are three characteristics of SGML which distinguish it from other markup languages:
its emphasis on descriptive rather than procedural markup; its document type concept; and its
independence of any one system for representing the script in which a text is written. These three
aspects are discussed briefly below, and then in more depth in sections 2.3 (‘SGML Structures’)
onp. 17 and 2.7 (‘SGML Entities ’) on p. 29.

2.1.1 Descriptive Markup

A descriptive markup system uses markup codes which simply provide names to categorize parts
of a document. Markup codes such as <para> or \end{list} simply identify a portion of a
document and assert of it that “the following item is a paragraph,” or “this is the end of the most
recently begun list,” etc. By contrast, a procedural markup system defines what processing is to
be carried out at particular points in a document: “call procedure PARA with parameters 1, b
and x here” or “move the left margin 2 quads left, move the right margin 2 quads right, skip
down one line, and go to the new left margin,” etc. In SGML, the instructions needed to process
a document for some particular purpose (for example, to format it) are sharply distinguished from
the descriptive markup which occurs within the document. Usually, they are collected outside the
document in separate procedures or programs.

With descriptive instead of procedural markup the same document can readily be processed
by many different pieces of software, each of which can apply different processing instructions to
those parts of it which are considered relevant. For example, a content analysis program might
disregard entirely the footnotes embedded in an annotated text, while a formatting program
might extract and collect them all together for printing at the end of each chapter. Different
sorts of processing instructions can be associated with the same parts of the file. For example,
one program might extract names of persons and places from a document to create an index or
database, while another, operating on the same text, might print names of persons and places in
a distinctive typeface.

2.1.2 Types of Document

Secondly, SGML introduces the notion of a document type, and hence a document type definition (D'TD).
Documents are regarded as having types, just as other objects processed by computers do. The
type of a document is formally defined by its constituent parts and their structure. The definition
of a report, for example, might be that it consisted of a title and possibly an author, followed by
an abstract and a sequence of one or more paragraphs. Anything lacking a title, according to this
formal definition, would not formally be a report, and neither would a sequence of paragraphs
followed by an abstract, whatever other report-like characteristics these might have for the human
reader.

If documents are of known types, a special purpose program (called a parser) can be used to
process a document claiming to be of a particular type and check that all the elements required
for that document type are indeed present and correctly ordered. More significantly, different
documents of the same type can be processed in a uniform way. Programs can be written which
take advantage of the knowledge encapsulated in the document structure information, and which
can thus behave in a more intelligent fashion.

2.1.3 Data Independence

A basic design goal of SGML was to ensure that documents encoded according to its provisions
should be transportable from one hardware and software environment to another without loss of
mformation. The two features discussed so far both address this requirement at an abstract level;
the third feature addresses it at the level of the strings of bytes (characters) of which documents are
composed. SGML provides a general purpose mechanism for string substitution, that is, a simple
machine-independent way of stating that a particular string of characters in the document should
be replaced by some other string when the document is processed. One obvious application for
this mechanism is to ensure consistency of nomenclature; another, more significant one, is to

counter the notorious inability of different computer systems to understand each other’s character
sets, or of any one system to provide all the graphic characters needed for a particular application,
by providing descriptive mappings for non-portable characters. The strings defined by this string-
substitution mechanism are called entities and they are discussed below in section 2.7 (‘SGML
Entities ’) on p. 29.

2.2 Textual Structure

A text is not an undifferentiated sequence of words, much less of bytes. For different purposes,
it may be divided into many different units, of different types or sizes. A prose text such as this
one might be divided into sections, chapters, paragraphs, and sentences. A verse text might be
divided into cantos, stanzas, and lines. Once printed, sequences of prose and verse might be
divided into volumes, gatherings, and pages.

Structural units of this kind are most often used to identify specific locations or reference
points within a text (“the third sentence of the second paragraph in chapter ten”; “canto 10,
line 1234”; “page 412,” etc.) but they may also be used to subdivide a text into meaningful
fragments for analytic purposes (“is the average sentence length of section 2 different from that of
section 5?” “how many paragraphs separate each occurrence of the word ‘nature’” “how many
pages?”). Other structural units are more clearly analytic, in that they characterize a section
of a text. A dramatic text might regard each speech by a different character as a unit of one
kind, and stage directions or pieces of action as units of another kind. Such an analysis is less
useful for locating parts of the text (“the 93rd speech by Horatio in Act 2”) than for facilitating
comparisons between the words used by one character and those of another, or those used by the
same character at different points of the play.

In a prose text one might similarly wish to regard as units of different types passages in
direct or indirect speech, passages employing different stylistic registers (narrative, polemic,
commentary, argument, ctc.), passages of different authorship and so forth. And for certain types
of analysis (most notably textual criticism) the physical appearance of one particular printed or
manuscript source may be of importance: paradoxically, one may wish to use descriptive markup
to describe presentational features such as typeface, line breaks, use of white space and so forth.

These textual structures overlap with each other in complex and unpredictable ways. Partic-
ularly when dealing with texts as instantiated by paper technology, the reader needs to be aware
of both the physical organization of the book and the logical structure of the work it contains.
Many great works (Sterne’s Tristram Shandy for example) cannot be fully appreciated without an
awareness of the interplay between narrative units (such as chapters or paragraphs) and page
divisions. For many types of research, it is the interplay between different levels of analysis which
is crucial: the extent to which syntactic structure and narrative structure mesh, or fail to mesh,
for example, or the extent to which phonological structures reflect morphology.

2.3 SGML Structures

This section describes the simple and consistent mechanism for the markup or identification of
structural textual units which is provided by SGML. It also describes the methods SGML provides
for the expression of rules defining how combinations of such units can meaningfully occur in any
text.

2.3.1 Elements

The technical term used in the SGML standard for a textual unit, viewed as a structural
component, is element. Different types of elements are given different names, but SGML provides
no way of expressing the meaning of a particular type of element, other than its relationship to
other element types. That is, all one can say about an element called (for instance) <blort> is that

17

2.3 SGML STRUCTURES

18

instances of it may (or may not) occur within elements of type <farble>, and that it may (or may
not) be decomposed into elements of type <blortette>. It should be stressed that the SGML
standard is entirely unconcerned with the semantics of textual elements: these are application
dependent.? It is up to the creators of SGML conformant tag sets (such as these Guidelines)
to choose intelligible names for the elements they identify and to document their proper use in
text markup. That is one purpose of this document. From the need to choose element names
indicative of function comes the technical term for the name of an element type, which is generic
tdentsfier, or GI.

Within a marked up text (a document wnstance), each element must be explicitly marked or
tagged in some way. The standard provides for a variety of different ways of doing this, the
most commonly used being to insert a tag at the beginning of the element (a start-tag) and another
atits end (an end-tag). The start- and end-tag pair are used to bracket off the element occurrences
within the running text, in rather the same way as different types of parentheses or quotation
marks are used in conventional punctuation. For example, a quotation element in a text might
be tagged as follows:

--- Rosalind’s remarks <quote>This is the silliest stuff
that ere | heard ofl</quote> clearly indicate ...

As this example shows, a start-tag takes the form <name>, where the opening angle bracket
indicates the start of the start-tag, “name” is the generic identifier of the element which is being
delimited, and the closing angle bracket indicates the end of a tag. An end-tag takes an identical
form, except that the opening angle bracket is followed by a solidus (slash) character, so that the
corresponding end-tag would be </name>.

2.3.2 Content Models: An Example

An element may be empty, that is, it may have no content at all, or it may contain simple text.
More usually, however, elements of one type will be embedded (contained entirely) within elements
of a different type.

To illustrate this, we will consider a very simple structural model. Let us assume that we wish
to identify within an anthology only poems, their titles, and the stanzas and lines of which they are
composed. In SGML terms, our document type is the anthology, and it consists of a series of poems.
Each poem has embedded within it one element, a title, and several occurrences of another, a
stanza, each stanza having embedded within it a number of line elements. Fully marked up, a

text conforming to this model might appear as follows: +

<anthology>
<poem><title>The SICK ROSE</title>
<stanza>
<line>0 Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>
<stanza>
<line>Has found out thy bed</line>
<line>0f crimson joy:</line>
<line>And his dark secret love</line>
<line>Does thy life destroy.</line>
</stanza>
</poem>

<I-- more poems go here -

2Work is currently going on in the standards community to create (using SGML syntax) a definition of a standard
“document style semantics and specification language” or DSSSL.

3The actual characters used for the delimiting characters (the angle brackets, exclamation mark and solidus) may be
redefined, but it is conventional to use the characters used in this description.

#The example is taken from William Blake’s Songs of innocence and experience (1794). The markup is designed for
illustrative purposes and is not TEI-conformant.

2.3.2 CONTENT MODELS: AN EXAMPLE

</anthology>

It should be stressed that this example does not use the same names as are proposed for
corresponding elements elsewhere in these Guidelines: the above is not a valid TEI document.
It will however serve as an introduction to the basic notions of SGML. White space and line
breaks have been added to the example for the sake of visual clarity only; they have no particular
significance in the SGML encoding itself. Also, the line

<I-- more poems go here -—>

1s an SGML comment and is not treated as part of the text.

This example makes no assumptions about the rules governing, for example, whether or
not a title can appear in places other than preceding the first stanza, or whether lines can
appear which are not included in a stanza: that is why its markup appears so verbose. In such
cases, the beginning and end of every element must be explicitly marked, because there are no
identifiable rules about which elements can appear where. In practice, however, rules can usually
be formulated to reduce the need for so much tagging. For example, considering our greatly
over-simplified model of a poem, we could state the following rules:

1. An anthology contains a number of poems and nothing else.

2. A poem always has a single title element which precedes the first stanza and contains no other
elements.

. Apart from the title, a poem consists only of stanzas.

. Stanzas consist only of lines and every line is contained by a stanza.

. Nothing can follow a stanza except another stanza or the end of a poem.

S O o W

. Nothing can follow a line except another line or the start of a new stanza.

From these rules, it may be inferred that we do not need to mark the ends of stanzas or lines
explicitly. From rule 2 it follows that we do not need to mark the end of the title—it is implied
by the start of the first stanza. Similarly, from rules 3 and 1 it follows that we need not mark the
end of the poem: since poems cannot occur within poems but must occur within anthologies, the
end of a poem is implied by the start of the next poem, or by the end of the anthology. Applying
these simplifications, we could mark up the same poem as follows:

<anthology>

<poem><title>The SICK ROSE

<stanza>
<line>0 Rose thou art sick.
<line>The invisible worm,
<line>That flies in the night
<line>In the howling storm:

<stanza>
<line>Has found out thy bed
<line>0f crimson joy:
<line>And his dark secret love
<line>Does thy life destroy.

<poem>
<I-- more poems go here -—>

</anthology>

The ability to use rules stating which elements can be nested within others to simplify markup
1s a very important characteristic of SGML. Before considering these rules further, you may wish
to consider how text marked up in the form above could be processed by a computer for very
many different purposes. A simple indexing program could extract only the relevant text elements
in order to make a list of titles, or of words used in the poem text; a simple formatting program
could insert blank lines between stanzas, perhaps indenting the first line of each, or inserting a
stanza number. Different parts of each poem could be typeset in different ways. A more ambitious

19

2.4 DEFINING SGML DOCUMENT STRUCTURES: THE DTD

20

analytic program could relate the use of punctuation marks to stanzaic and metrical divisions. °

Scholars wishing to see the implications of changing the stanza or line divisions chosen by the
editor of this poem can do so simply by altering the position of the tags. And of course, the
text as presented above can be transported from one computer to another and processed by any
program (or person) capable of making sense of the tags embedded within it with no need for the
sort of transformations and translations needed to move word processor files around.

2.4 Defining SGML Document Structures: The DTD

Rules such as those described above are the first stage in the creation of a formal specification
for the structure of an SGML document, or document type definition, usually abbreviated to DTD. In
creating a D'TD, the document designer may be as lax or as restrictive as the occasion warrants.
A balance must be struck between the convenience of following simple rules and the complexity
of handling real texts. This is particularly the case when the rules being defined relate to texts
which already exist: the designer may have only the haziest of notions as to an ancient text’s
original purpose or meaning and hence find it very difficult to specify consistent rules about its
structure. On the other hand, where a new text is being prepared to an exact specification, for
example for entry into a textual database of some kind, the more precisely stated the rules, the
better they can be enforced. Even in the case where an existing text is being marked up, it may
be beneficial to define a restrictive set of rules relating to one particular view or hypothesis about
the text—if only as a means of testing the usefulness of that view or hypothesis. It is important to
remember that every document type definition is an interpretation of a text. There 1s no single
DTD which encompasses any kind of absolute truth about a text, although it may be convenient
to privilege some D'TDs above others for particular types of analysis.

At present, SGML is most widely used in environments where uniformity of document
structure is a major desideratum. In the production of technical documentation, for example, it is
of major importance that sections and subsections should be properly nested, that cross references
should be properly resolved and so forth. In such situations, documents are seen as raw material
to match against pre-defined sets of rules. As discussed above, however, the use of simple rules
can also greatly simplify the task of tagging accurately elements of less rigidly constrained texts.
By making these rules explicit, the scholar reduces his or her own burdens in marking up and
verifying the electronic text, while also being forced to make explicit an interpretation of the
structure and significant particularities of the text being encoded.

2.4.1 An Example DTD

A DTD is expressed in SGML as a set of declarative statements, using a simple syntax defined in
the standard. For our simple model of a poem, the following declarations would be appropriate:

<IELEMENT anthology -
<IELEMENT poem -

(poem+)>
(title?, stanza+)>

<IELEMENT title - O (#PCDATA) >
<IELEMENT stanza - 0 (linet) >
<VELEMENT line 0 O (#PCDATA) >

These five lines are examples of formal SGML element declarations. A declaration, like an
element, is delimited by angle brackets; the first character following the opening bracket must be
an exclamation mark, followed immediately by one of a small set of SGML-defined keywords,
specifying the kind of object being declared. The five declarations above are all of the same type:
each begins with an ELEMENT keyword, indicating that it declares an element, in the technical
sense defined above. Each consists of three parts: a name or group of names, two characters
specifying minimization rules, and a content model. Each of these parts is discussed further below.
Components of the declaration are separated by white space, that is one or more blanks, tabs or
newlines.

Note that this simple example has not addressed the problem of marking elements such as sentences explicitly; the
implications of this are discussed below in section 2.5.2 (‘Concurrent Structures ’) on p. 24.

2.4.2 MINIMIZATION RULES

The first part of each declaration above gives the generic identifier of the element which is
being declared, for example ‘poem’, ‘title’, etc. It is possible to declare several elements in one
statement, as discussed below.

2.4.2 Minimization Rules

The second part of the declaration specifies what are called minimization rules for the element
concerned. These rules determine whether or not start- and end-tags must be present in every
occurrence of the element concerned. They take the form of a pair of characters, separated by
white space, the first of which relates to the start-tag, and the second to the end-tag. In either case,
either a hyphen or a letter O (for “omissible” or “optional”) must be given; the hyphen indicating
that the tag must be present, and the letter O that it may be omitted. Thus, in this example, every
element except <line> must have a start-tag. Only the <poem> and <anthology> elements
must have end-tags as well.

2.4.3 Content Model

The third part of each declaration, enclosed in parentheses, is called the content model of the
element, because it specifies what element occurrences may legitimately contain. Contents are
specified either in terms of other elements or using special reserved words. There are several
such reserved words, of which by far the most commonly encountered is #PCDATA, as in this
example. This is an abbreviation for ‘parsed character data,” and it means that the element being
defined may contain any valid character data. If an SGMUL declaration is thought of as a structure
like a family tree, with a single ancestor at the top (in our case, this would be <anthology>), then
almost always, following the branches of the tree downwards (for example, from <anthology>
to <poem> to <stanza> to <line> and <title>) will lead eventually to #PCDATA. In our
example, <title> and <line> are so defined. Since their content models say #PCDATA only and
name no embedded elements, they may not contain any embedded elements.

2.4.4 Occurrence Indicators

The declaration for <stanza> in the example above states that a stanza consists of one or more
lines. It uses an occurrence indicator (the plus sign) to indicate how many times the element named
in its content model may occur. There are three occurrence indicators in the SGML syntax,
conventionally represented by the plus sign, the question mark, and the asterisk or star. ® The plus
sign means that there may be one or more occurrences of the element concerned; the question
mark means that there may be at most one and possibly no occurrence; the star means that the
element concerned may either be absent or appear one or more times. Thus, if the content model
for <stanza> were (LINE*), stanzas with no lines would be possible as well as those with more
than one line. If it were (LINE?), again empty stanzas would be countenanced, but no stanza
could have more than a single line. The declaration for <poem> in the example above thus
states that a <poem> cannot have more than one title, but may have none, and that it must have
at least one <stanza> and may have several.

2.4.5 Group Connectors

The content model (TITLE?, STANZA+) contains more than one component, and thus needs
additionally to specify the order in which these elements (<title> and <stanza>) may appear.
This ordering 1s determined by the group connector (the comma) used between its components.
There are three possible group connectors, conventionally represented by comma, vertical bar,
and ampersand. 7 The comma means that the components it connects must both appear in the

6Like the delimiters, these are assigned formal names by the standard and may be redefined with an appropriate
SGML declaration.

"What are here called “group connectors” are referred to by the SGML standard simply as “connectors”; the longer
term is preferred here to stress the fact that these connectors are used only in SGML model groups and name groups.
Like the delimiters and the occurrence indicators, group connectors are assigned formal names by the standard and may
be redefined with an appropriate SGML declaration.

21

2.4 DEFINING SGML DOCUMENT STRUCTURES: THE DTD

22

order specified by the content model. The ampersand indicates that the components it connects
must both appear but may appear in any order. The vertical bar indicates that only one of
the components it connects may appear. If the comma in this example were replaced by an
ampersand, a title could appear either before the stanzas of a <poem> or at the end (but not
between stanzas). If it were replaced by a vertical bar, then a <poem> would consist of either a
title or just stanzas—but not both!

2.4.6 Model Groups

In our example so far, the components of each content model have been either single elements
or #PCDATA. It is quite permissible however to define content models in which the components
are lists of elements, combined by group connectors. Such lists, known as model groups, may
also be modified by occurrence indicators and themselves combined by group connectors. To
demonstrate these facilities, let us now expand our example to include non-stanzaic types of
verse. For the sake of demonstration, we will categorize poems as one of stanzaic, couplets, or
blank (or stichic). A blank-verse poem consists simply of lines (we ignore the possibility of verse
paragraphs for the moment) ® so no additional elements need be defined for it. A couplet is
defined as a <line1> followed by a <line2>.

<IELEMENT couplet O O (linel, line2) >

The elements <linel> and <line2> (which are distinguished to enable studies of rhyme
scheme, for example) have exactly the same content model as the existing <line> element. They
can therefore share the same declaration. In this situation, it is convenient to supply a name group
as the first component of a single element declaration, rather than give a series of declarations
differing only in the names used. A name group is a list of GIs connected by any group connector
and enclosed in parentheses, as follows:

<IELEMENT (line | linel | line2) O O (#PCDATA) >

The declaration for the <poem> element can now be changed to include all three possibili-
ties:

<IELEMENT poem - O (title?, (stanza+ | couplet+ | line+)) >

That is, a poem consists of an optional title, followed by one or several stanzas, or one or
several couplets, or one or several lines. Note the difference between this definition and the
following:

<IELEMENT poem - O (title?, (stanza | couplet | line)+) >

The second version, by applying the occurrence indicator to the group rather than to each
element within it, would allow for a single poem to contain a mixture of stanzas, couplets or blank
verse.

Quite complex models can easily be built up in this way, to match the structural complexity
of many types of text. As a further example, consider the case of stanzaic verse in which a refrain
or chorus appears. A refrain may be composed of repetitions of the line element, or it may simply
be text, not divided into verse lines. A refrain can appear at the start of a poem only, or as an
optional addition following each stanza. This could be expressed by a content model such as the
following:

<IELEMENT refrain - - (#PCDATA | line+)>
<IELEMENT poem - 0 (title?,
((Lline+)

| (refrain?, (stanza, refrain?)+))) >

That is, a poem consists of an optional title, followed by either a sequence of lines, or an
un-named group, which starts with an optional refrain, followed by one of more occurrences of
another group, each member of which is composed of a stanza followed by an optional refrain.
A sequence such as ‘refrain - stanza - stanza - refrain’ follows this pattern, as does the sequence

8Tt will not have escaped the astute reader that the fact that verse paragraphs need not start on a line boundary
seriously complicates the issue; see further section 2.5.2 (‘Concurrent Structures °) on p. 24.

‘stanza - refrain - stanza - refrain’. The sequence ‘refrain - refrain - stanza - stanza’ does not,
however, and neither does the sequence “stanza - refrain - refrain - stanza.” Among other
conditions made explicit by this content model are the requirements that at least one stanza
must appear in a poem, if it is not composed simply of lines, and that if there is both a title and a
stanza they must appear in that order.

2.5 Complicating the Issue: More on Element
Declarations

In the simple cases described so far, it has been assumed that one can identify the immediate
constituents of every element defined in a textual structure. A poem consists of stanzas, and an
anthology consists of poems. Stanzas do not float around unattached to poems or combined
into some other unrelated element; a poem cannot contain an anthology. All the elements of
a given document type may be arranged into a hierarchic structure, arranged like a family tree
with a single ancestor at the top and many children (mostly the elements containing #PCDATA)
at the bottom. This gross simplification turns out to be surprisingly effective for a large number
of purposes. It is not however adequate for the full complexity of real textual structures. In
particular, it does not cater for the case of more or less freely floating elements that can appear
at almost any hierarchic level in the structure, and it does not cater for the case where different
elements overlap or several different trees may be identified in the same document. To deal with
the first case, SGML provides the exception mechanism; to deal with the second, SGML permits
the definition of “concurrent” document structures.

2.5.1 Exceptions to the Content Model

In most documents, there will be some elements that can occur at any level of its structure.
Annotations, for example, might be attached to the whole of a poem, to a stanza, to a line of a
stanza or to a single word within it. In a textual critical edition, the same might be true of variant
readings. In this simple case, the complexity of adding an annotation element as an optional
component of every content model is not particularly onerous; in a more realistically complex
model perhaps containing some ten or twenty levels such an approach can become much more
difficult.

To cope with this, SGML allows for any content model to be further modified by means of
an exception list. There are two types of exception: nclusions, that is, additional elements that can
be included at any point in the model group or any of its constituent elements; and exclusions, that
is, elements that cannot be included within the current model.

To extend our declarations further to allow for annotations and variant readings, which we
will assume can appear anywhere within the text of a poem, we first need to add declarations for
these two elements:

<IELEMENT (note | variant) - - (#PCDATA)>

The note and variant elements must have both start- and end-tags, since they can appear
anywhere. Rather than add them to the content model for each type of poem, we can add them
in the form of an inclusion list to the poem element, which now reads:

<IELEMENT poem - O (title?, (stanza+ | couplet+ | line+))
+(note | variant) >

The plus sign at the start of the (NOTE | VARIANT) name list indicates that this is an
inclusion exception. With this addition, notes or variants can appear at any point in the content
of a poem element—even those (such as <title>) for which we have defined a content model of
#PCDATA. They can thus also appear within notes or variants!

If we wanted for some reason to prevent notes or variants appearing within titles, we could
add an exclusion exception to the declaration for <title> above:

<IELEMENT title - O (#PCDATA) -(note | variant) >

23

2.5 COMPLICATING THE ISSUE: MORE ON ELEMENT DECLARATIONS

24

The minus sign at the start of the (NOTE | VARIANT) name list indicates that this is an
exclusion exception. With this addition, notes and variants will be prohibited from appearing
within titles, notwithstanding their potential inclusion implied by the previous addition to the
content model for <poem>.

In the same way, we could prevent notes and variants from nesting within notes and variants
by modifying the definition above to read

<IELEMENT (note | variant) - - (#PCDATA) -(note | variant) >

The meticulous reader will note that this precludes both variants within notes and notes
within variants. Inclusion and exclusion exceptions should be used with care as their ramifications
may not be immediately apparent.

2.5.2 Concurrent Structures

All the structures we have so far discussed have been simply hierarchic: that is, at every level
of the tree, each node is entirely contained by a parent node. The figure below represents the
structure of a document conforming to the simple DTD we have so far defined as a tree (drawn
on its side through exigencies of space). We have already seen how Blake’s poem can be divided
into a title and two stanzas, each of four lines. In this diagram, we add a second poem, consisting
of one stanza and a title, to make up an instance of an anthology:

|-—————— title
|
| |----linel
| |]----line2
| [—— POEM1---]----stanzal---]----1ine3
I | |]----line4
I |
I | |-—--1ine5
| | ----stanza2---]----1ine6
I |]----line7
I |]-—--1ine8
anthology-|
|
I e title
| I
I | |]----linel
I | |-——--line2
|-——--- POEM2---]----stanzal---|----l1ine3
|]----line4
|]--—-line5

Clearly, there are many such trees that might be drawn to describe the structure of this or
other anthologies. Some of them might be representable as further subdivisions of this tree:
for example, we might subdivide the lines into individual words, since no word crosses a line
boundary. But equally clearly there are many other trees that might be drawn which do not
fit within this tree. We might, for example, be interested in syntactic structures — which rarely
respect the formal boundaries of verse. Or, to take a simpler example, we might want to represent
the pagination of different editions of the same text.

One way of doing this would be to group the lines and titles of our current model into pages.
A declaration for such an element is simple enough:

<IELEMENT page - - ((title?, line+)+) >

That is, a page consists of one or more unnamed groups, each of which contains an optional
title, followed by a sequence of lines. (Note, incidentally, that this model prohibits a title appearing
on its own at the foot of a page). However, simply inserting the element <page> into the
hierarchy already defined is not as easy as it might seem. Some poems are longer than a single
page, and other pages contain more than one poem. We cannot therefore insert the element
<page> between <anthology> and <poem> in the hierarchy, nor can it go between <poem>
and <stanza>, nor yet in both places at once! What is needed is the ability to create a separate

2.5.2 CONCURRENT STRUCTURES

hierarchy, with the same elements at the bottom (the stanzas, lines and titles), but combined into
a different superstructure. This is the ability which the CONCUR feature of SGML gives.

A separate document type definition must be created for each hierarchic tree into which the
text 1s to be structured. The definition we have so far built up for the anthology looks, in full, like
this:

<IDOCTYPE anthology [

<IELEMENT anthology - - (poem+) >
<IELEMENT poem - - (title?, stanza+t) >
<IELEMENT stanza - 0 (linet) >
<IELEMENT (title | line) - O (#PCDATA) >

1>
As this example shows, the name of a document type must always be the same as the name
of the largest element in it, that is the element at the top of the hierarchy. The syntax used
is discussed further below (see section 2.9.2 (“T'he DTD’) on p. 32). Let us now add to this
declaration a second definition for a concurrent document type, which we will call a paged
anthology, or <p.anth> for short:

<IDOCTYPE p.anth [

<IELEMENT p.anth - - (paget) >
<IELEMENT page - - (title?, line+)+) >
<IELEMENT (title]line) - O (#PCDATA) >
1>

We have now defined two different ways of looking at the same basic text—the PCDATA
components grouped by both these document type definitions into lines or titles. In one view, the
lines are grouped into stanzas and poems; in the other they are grouped into pages only. Notice
that it is exactly the same text which is visible in both views: the two hierarchies simply allow us
to arrange it in two different ways.

To mark up the two views, it will be necessary to indicate which hierarchy each element
belongs to. This is done by including the name of the document type (the view) within parentheses
immediately before the identifier concerned, inside both start- and end-tags. Thus, pages (which
are only visible in the <p.anth> document type) must be tagged with a <(p.anth)page> tag at
their start and a </(p.anth)page> at their end. In the same way, as poems and stanzas appear
only in the <anthology> document type, they must now be tagged using <(anthology)poem>
and <(anthology)stanza> tags respectively. For the line and title elements, however, which
appear in both hierarchies, no document type specification need be given: any tag containing
only a name is assumed to mark an element present in every active document type.

As a simple example, let us assume that Blake’s poem appears in some paged anthology, with
the page break occurring half way through the first stanza. The poem might then be marked up
as follows:

<(anthology)anthology>
<(p-anth)p.anth>
<(p-anth)page>

<I-- other titles and lines on this page here -->

<(anthology)poem><title>The SICK ROSE
<(anthology)stanza>
<line>0 Rose thou art sick.
<line>The invisible worm,
</(p-anth)page>
<(p-anth)page>
<line>That flies in the night
<line>In the howling storm:
<(anthology)stanza>
<line>Has found out thy bed
<line>0f crimson joy:
<line>And his dark secret love
<line>Does thy life destroy.

25

2.6 ATTRIBUTES

26

</(anthology)poem>

<I-- rest of material on this page here -——>
</(p-.anth)page>

</(p-.anth)p.anth)
</(anthology)anthology>

It 1s now possible to select only the elements concerned with a particular view from the text,
even though both are represented in the tagging. A processor concerned only with the pagination
will see only those elements whose tags include the PANTH specification, or which have no
specification at all. A processor concerned only with the ANTHOLOGY view of things will
not see the page breaks. And a processor concerned to inter-relate the two views can do so
unambiguously.

A note of caution is appropriate: CONCUR 1is an optional feature of SGML, and not all
available SGML software systems support it, while those which do, do not always do so according
to the letter of the standard. For that reason, if for no other, wherever these Guidelines have
identified a potential application of CONCUR, they also invariably suggest alternative methods
as well. For fuller discussion of these issues, see chapter 31 (‘Multiple Hierarchies’) on p. 633.

Note also that we cannot introduce a new element, a page number for example, into the
<p.anth> document type, since there is no existing data in the <anthology> document type
which could be fitted into it. One way of adding that extra information is discussed in the next
section.

2.6 Attributes

In the SGML context, the word ‘attribute’, like some other words, has a specific technical sense. It
1s used to describe information which is in some sense descriptive of a specific element occurrence
but not regarded as part of its content. For example, you might wish to add a status attribute
to occurrences of some elements in a document to indicate their degree of reliability, or to add
an identifier attribute so that you could refer to particular element occurrences from elsewhere
within a document. Attributes are useful in precisely such circumstances.

Although different elements may have attributes with the same name, (for example, in the
TEI scheme, every element is defined as having an id attribute), they are always regarded as
different, and may have different values assigned to them. If an element has been defined as
having attributes, the attribute values are supplied in the document instance as attribute-value pairs
inside the start-tag for the element occurrence. An end-tag may not contain an attribute-value
specification, since it would be redundant.

For example

<poem id=P1l status="draft"> ... </poem>

The <poem> element has been defined as having two attributes: id and status. For the
instance of a <poem> in this example, represented here by an ellipsis, the id attribute has the
value P1 and the status attribute has the value draft. An SGML processor can use the values
of the attributes in any way it chooses; for example, a formatter might print a poem element
which has the status attribute set to draft in a different way from one with the same attribute
set to revised; another processor might use the same attribute to determine whether or not
poem elements are to be processed at all. The id attribute is a slightly special case in that, by
convention, it is always used to supply a unique value to identify a particular element occurrence,
which can be used for cross reference purposes, as discussed further below.

Like elements, attributes are declared in the SGML document type declaration, using rather
similar syntax. As well as specifying its name and the element to which it is to be attached, it is
possible to specify (within limits) what kind of value is acceptable for an attribute and a default
value.

The following declarations could be used to define the two attributes we have specified above
for the <poem> element:

<IATTLIST poem
id 1D #IMPLIED
status (draft | revised | published) draft >

The declaration begins with the symbol ATTLIST, which introduces an attribute list specification.
The first part of this specifies the element (or elements) concerned. In our example, attributes
have been declared only for the <poem> element. If several elements share the same attributes,
they may all be defined in a single declaration; just as with element declarations, several names
may be given in a parenthesized list. Following this name (or list of names), is a series of rows,
one for each attribute being declared, each containing three parts. These specify the name of the
attribute, the type of value it takes, and a default value respectively.

Attribute names (id and status in this example) are subject to the same restrictions as other
names in SGML; they need not be unique across the whole DTD, however, but only within the
list of attributes for a given element.

The second part of an attribute specification can take one of two forms, both illustrated above.
The first case uses one of a number of special keywords to declare what kind of value an attribute
may take. In the example above, the special keyword ID is used to indicate that the attribute ID
will be used to supply a unique identifying value for each poem instance (see further the discussion
below). Among other possible SGML keywords are

CDATA The attribute value may contain any valid character data; tags may be included in the
value, but they will not be recognized by the SGML parser, and will not be processed as tags
normally are

IDREF The attribute value must contain a pointer to some other element (see further the
discussion of ID below)

NMTOKEN The attribute value 1s a name token, that is, (more or less) any string of alphanumeric
characters

NUMBER The attribute value is composed only of numerals

In the example above, a list of the possible values for the status attribute has been supplied.
This means that a parser can check that no <poem> is defined for which the status attribute
does not have one of draft, revised, or published as its value. Alternatively, if the
declared value had been either CDATA or NAME, a parser would have accepted almost any
string of characters (Status=awful or status=12345678 if it had been a NVTOKEN; sta-
tus=""anything goes" or status = "well, ALMOST anything" if it were CDATA).
Sometimes, of course, the set of possible values cannot be pre-defined. Where it can, as in this
case, it 1s generally better to do so.

The last piece of each information in each attribute definition specifies how a parser should
interpret the absence of the attribute concerned. This can be done by supplying one of the special
keywords listed below, or (as in this case) by supplying a specific value which is then regarded as
the value for every element which does not supply a value for the attribute concerned. Using
the example above, if a poem is simply tagged <poem>, the parser will treat it exactly as if it
were tagged <poem status=draft>. Alternatively, one of the following keywords may be used
to specify a default value for an attribute:

#REQUIRED A value must be specified.

#IMPLIED A value need not be supplied (as in the case of ID above).

#CURRENT If no value is supplied in this element occurrence, the last specified value should
be used.

For example, if the attribute definition above were rewritten as

<VATTLIST poem
id 1D #IMPLIED
status (draft | revised | published) #CURRENT >

then poems which appear in the anthology simply tagged <poem> would be treated as if
they had the same status as the preceding poem. If the keyword were #REQUIRED rather than
#CURRENT, the parser would report such poems as erroneously tagged, as it would if any value
other than draft, published, or revised were supplied. The use of #CURRENT implies
that whatever value 1is specified for this attribute on the first poem will apply to all subsequent

27

2.6 ATTRIBUTES

28

poems, until altered by a new value. Only the status of the first poem need therefore be supplied,
if all are the same.

It is sometimes necessary to refer to an occurrence of one textual element from within another,
an obvious example being phrases such as “see note 6” or “as discussed in chapter 5.” When a
text is being produced the actual numbers associated with the notes or chapters may not be
certain. If we are using descriptive markup, such things as page or chapter numbers, being
entirely matters of presentation, will not in any case be present in the marked up text: they will
be assigned by whatever processor is operating on the text (and may indeed differ in different
applications). SGML therefore provides a special mechanism by which any element occurrence
may be given a special identifier, a kind of label, which may be used to refer to it from anywhere
else within the same text. The cross-reference itself is regarded as an element occurrence of a
specific kind, which must also be declared in the DTD. In each case, the identifying label (which
may be arbitrary) is supplied as the value of a special attribute.

Suppose, for example, we wish to include a reference within the notes on one poem that refers
to another poem. We will first need to provide some way of attaching a label to each poem: this
is done by defining an attribute for the <poem> element, as suggested above.

<IATTLIST poem
id ID #IMPLIED >

Here we define an attribute id, the value of which must be of type ID. It is not required
that any attribute of type ID have the name id as well; it is however a useful convention almost
universally observed. Note that not every poem need carry an id attribute and the parser may
safely ignore the lack of one in those which do not. Only poems to which we intend to refer
need use this attribute; for each such poem we should now include in its start-tag some unique
identifier, for example:

<POEM 1D=Rose>
Text of poem with identifier *ROSE’
</POEM>

<POEM 1D=P40>
Text of poem with identifier *P40”
</POEM>

<POEM>
This poem has no identifier
</POEM>

Next we need to define a new element for the cross reference itself. This will not have any
content—it is only a pointer—but it has an attribute, the value of which will be the identifier of
the element pointed at. This is achieved by the following declarations:

<IELEMENT poemref - O EMPTY >
<IATTLIST poemref target IDREF #REQUIRED >

The <poemref> element needs no end-tag because it has no content. It has a single attribute
called target. The value of this attribute must be of type IDREF (the keyword used for cross
reference pointers of this type) and it must be supplied.

With these declarations in force, we can now encode a reference to the poem with id Rose
as follows:

Blake’s poem on the sick rose <POEMREF TARGET=Rose> ...

When an SGML parser encounters this empty element it will simply check that an element
exists with the identifier Rose. Different SGML processors could take any number of additional
actions: a formatter might construct an exact page and line reference for the location of the poem
in the current document and insert it, or just quote the poem’s title or first lines. A hypertext style
processor might use this element as a signal to activate a link to the poem being referred to.
The purpose of the SGML markup is simply to indicate that a cross reference exists: it does not
determine what the processor 1s to do with it.

2.7 SGML Entities

The aspects of SGML discussed so far are all concerned with the markup of structural elements
within a document. SGML also provides a simple and flexible method of encoding and naming
arbitrary parts of the actual content of a document in a portable way. In SGML the word entity has
a special sense: it means a named part of a marked up document, irrespective of any structural
considerations. An entity might be a string of characters or a whole file of text. To include it
in a document, we use a construction known as an entity reference. For example, the following
declaration

<IENTITY tei "Text Encoding Initiative'>

defines an entity whose name is #i and whose value is the string “Text Encoding Initiative.”

This is an instance of an enfity declaration, which declares an nternal entity. The following
declaration, by contrast, declares a system entity:

<IENTITY ChapTwo SYSTEM "sgmlmkup.txt">

This defines a system entity whose name is ChapTwo and whose value is the text associated
with the system identifier — in this case, the system identifier is the name of an operating system
file and the replacement text of the entity is the contents of the file.

Once an entity has been declared, it may be referenced anywhere within a document.
This is done by supplying its name prefixed with the ampersand character and followed by the
semicolon. The semicolon may be omitted if the entity reference is followed by a space or record
end.

When an SGML parser encounters such an entity reference, it immediately substitutes the value
declared for the entity name. Thus, the passage “The work of the &tei has only just begun”
will be interpreted by an SGML processor exactly as if it read “The work of the Text Encoding
Initiative has only just begun”. In the case of a system entity, it is, of course, the contents of
the operating system file which are substituted, so that the passage “The following text has been
suppressed: &ChapTwo;” will be expanded to include the whole of whatever the system finds in
the file sgmlmbkup.txt.'°

This obviously saves typing, and simplifies the task of maintaining consistency in a set of
documents. If the printing of a complex document is to be done at many sites, the document body
itself might use an entity reference, such as &site;, wherever the name of the site is required.
Different entity declarations could then be added at different sites to supply the appropriate string
to be substituted for this name, with no need to change the text of the document itself.

This string substitution mechanism has many other applications. It can be used to circumvent
the notorious inadequacies of many computer systems for representing the full range of graphic
characters needed for the display of modern English (let alone the requirements of other modern
scripts or of ancient languages). So-called “special characters” not directly accessible from the
keyboard (or if accessible not correctly translated when transmitted) may be represented by an
entity reference.

Suppose, for example, that we wish to encode the use of ligatures in early printed texts.
The ligatured form of ‘ct’ might be distinguished from the non-ligatured form by encoding it as
&ctlig; rather than ct. Other special typographic features such as leafstops or rules could
equally well be represented by mnemonic entity references in the text. When processing such
texts, an entity declaration would be added giving the desired representation for such textual
elements. If, for example, ligatured letters are of no interest, we would simply add a declaration
such as

<IENTITY ctlig "ct" >

9By convention case is significant in entity names, unlike element names.

10Strictly speaking, SGML does not require system entities to be files; they can in principle be any data source available
to the SGML processor: files, results of database queries, results of calls to system functions — anything at all. It is simpler,
however, when first learning SGML, to think of system entities as referring to files, and this discussion therefore ignores
the other possibilities. All existing SGML processors do support the use of system entities to refer to files; fewer support
the other possible uses of system entities.

29

2.8 MARKED SECTIONS

30

and the distinction present in the source document would be removed. If, on the other hand, a
formatting program capable of representing ligatured characters is to be used, we might replace
the entity declaration to give whatever sequence of characters such a program requires as the
expansion.

A list of entity declarations is known as an enfity set. Standard entity sets are provided for use
with most SGML processors, in which the names used will normally be taken from the lists of
such names published as an annex to the SGML standard and elsewhere, as mentioned above.

The replacement values given in an entity declaration are, of course, highly system de-
pendent. If the characters to be used in them cannot be typed in directly, SGML provides a
mechanism to specify characters by their numeric values, known as character references. A character
reference 1s distinguished from other characters in the replacement string by the fact that it begins
with a special symbol, conventionally the sequence ‘&#’, and ends with the normal semicolon.
For example, if the formatter to be used represents the ligatured form of ct by the characters ¢
and t prefixed by the character with decimal value 102, the entity declaration would read:

<IENTITY ctlig "fct" >

Note that character references will generally not make sense if transferred to another hard-
ware or software environment: for this reason, their use is only recommended in situations like
this.

Useful though the entity reference mechanism is for dealing with occasional departures from
the expected character set, no one would consider using it to encode extended passages, such as
quotations in Greek or Russian in an English text. In such situations, different mechanisms are
appropriate. These are discussed elsewhere in these Guidelines (see chapter 4 (‘Characters and
Character Sets’) on p. 71).

A special form of entities, parameter entities, may be used within SGML markup declarations;
these differ from the entities discussed above (which technically are known as general entities) in two
ways:

e Parameter entities are used only within SGML markup declarations; with some special
exceptions which will not be discussed here, they will normally not be found within the
document itself.

e Parameter entities are delimited by percent sign and semicolon, rather than by ampersand
and semicolon.

Declarations for parameter entities take the same form as those for general entities, but insert
a percent sign between the keyword ENTITY and the name of the entity itself. White space
(blanks, tabs, or line breaks) must occur on both sides of the percent sign. An internal parameter
entity named 7TELprose, with an expansion of INCLUDE, and an external parameter entity named
TELextensions.dtd, which refers to the system file mystuffdtd, could be declared thus:'"

<IENTITY % TEIl.prose ”INCLUDE”>
<IENTITY % TEl.extensions.dtd SYSTEM “mystuff.dtd’>

The TEI document type definition makes extensive use of parameter entities to control the
selection of different tag sets and to make it easier to modify the TEI DTD. Numerous examples
of their use may thus be found in chapter 3 (‘Structure of the TEI Document Type Definition’)
on p. 35.

2.8 Marked Sections

It is occasionally convenient to mark some portion of a text for special treatment by the SGML
parser. Certain portions of legal boilerplate, for example, might need to be included or omitted
systematically, depending on the state or country in which the document was intended to be valid.
(Thus the statement “Liability is limited to $50,000.” might need to be included in Delaware,
but excluded in Maryland.) Technical manuals for related products might share a great deal of

1Such entity declarations might be used in extending the TEI base tag set for prose using the declarations found in

mystuff-dtd.

information but differ in some details; it might be convenient to maintain all the information
for the entire set of related products in a single document, selecting at display or print time only
those portions relevant to one specific product. (Thus, a discussion of how to change the oil in a
car might use the same text for most steps, but offer different advice on removing the carburetor,
depending on the specific engine model in question.)

SGML provides the marked section construct to handle such practical requirements of docu-
ment production. In general, as the examples above are intended to suggest, it is more obviously
useful in the production of new texts than in the encoding of pre-existing texts. Most users of
the TEI encoding scheme will never need to use marked sections, and may wish to skip the
remainder of this discussion. The TEI DTD makes extensive use of marked sections, however,
and this section should be read and understood carefully by anyone wishing to follow in detail
the discussions in chapter 3 (‘Structure of the TEI Document Type Definition’) on p. 35.

The “special processing” offered for marked sections in SGML can be of several types, each
associated with one of the following keywords:

INCLUDE The marked section should be included in the document and processed normally.

IGNORE The marked section should be ignored entirely; if the SGML application program
produces output from the document, the marked section will be excluded from the document.

CDATA The marked section may contain strings of characters which look like SGML tags or
entity references, but which should not be recognized as such by the SGML parser. (These
Guidelines use such CDATA marked sections to enclose the examples of SGML tagging;)

RCDATA The marked section may contain strings of characters which look like SGML tags,
but which should not be recognized as such by the SGML parser; entity references, on the
other hand, may be present and should be recognized and expanded as normal.

TEMP The passage included in the marked section is a temporary part of the document; the
marked section is used primarily to indicate its location, so that it can be removed or revised
conveniently later.

When a marked section occurs in the text, it 1s preceded by a marked-section start string, which
contains one or more keywords from the list above; its end 1s marked by a marked-section close string;
The second and last lines of the following example are the start and close of a marked section to
be ignored:

In such cases, the bank will reimburse the customer for all losses.
<I[IGNORE [

Liability is limited to $50,000.

11>

Of the marked section keywords, the most important for understanding the TEI DTD are
INCLUDE and IGNORE; these can be used to include and exclude portions of a document — or
a DTD — selectively, so as to adjust it to relevant circumstances (e.g. to allow a user to select
portions of the DTD relevant to the document in question).

The literal keywords INCLUDE and 1GNORE, however, are not much use in adjusting a DTD
or a document to a user’s requirements, however. (To change the text above to include the
excluded sentence, for example, a user would have to edit the text manually and change 1GNORE
to INCLUDE. It might be thought just as easy to add and delete the sentence manually.) But
the keywords need not be given as literal values; they can be represented by a parameter entity
reference. In a document with many sentences which should be included only in Maryland, for
example, each such sentence can be included in a marked section whose keyword is represented
by a reference to a parameter entity named Maryland. The earlier example would then be:

In such cases, the bank will reimburse the customer for all losses.
<IT %Maryland; [

Liability is limited to $50,000.

11>

When the entity Maryland is defined as 1GNORE, the marked sections so marked will all be
excluded. If the definition is changed to the following, the marked sections will be included in the
document:

<IENTITY % Maryland ”INCLUDE”>

31

2.9 PUTTING IT ALL TOGETHER

32

When parameter entities are used in this way to control marked sections in a DTD, the
external DTD file normally contains a default declaration. If the user wishes to override the
default (as by including the Maryland sections), adding an appropriate declaration to the DTD
subset suffices to override the default.'?

The examples of parameter entity declarations at the end of the preceding section can now
be better understood. The declarations

<IENTITY % TEIl.prose ”INCLUDE”>
<IENTITY % TEl.extensions.dtd SYSTEM “mystuff.dtd’>

have the effect of including in the DTD all the sections marked as relevant to prose, since in the
external DTD files such sections are all included in marked sections controlled by the parameter
entity TELprose. They also override the default declaration of TELextensions.dtd (which declares
this entity as an empty string), so as to include the file mystuff.dtd in the DTD.

2.9 Putting It All Together

An SGML conformant document has a number of parts, not all of which have been discussed in
this chapter, and many of which the user of these Guidelines may safely ignore. For completeness,
the following summary of how the parts are inter-related may however be found useful.

An SGML document consists of an SGML prolog and a document instance. 'The prolog contains
an SGML declaration (described below) and a document type definition, which contains element and
entity declarations such as those described above. Different software systems may provide
different ways of associating the document instance with the prolog; in some cases, for example,
the prolog may be “hard-wired” into the software used, so that it is completely invisible to the
user.

2.9.1 The SGML Declaration

The SGML declaration specifies basic facts about the dialect of SGML being used such as the
character set, the codes used for SGML delimiters, the length of identifiers, etc. Its content
for TEI-conformant document types 1s discussed further in chapters 39 (‘Formal Grammar for
the TEI-Interchange-Format Subset of SGML’) on p. 993 and 28 (‘Conformance’) on p. 611.
Normally the SGML declaration will be held in the form of compiled tables by the SGML
processor and will thus be invisible to the user.

2.9.2 The DTD

The document type definition specifies the document type definition against which the document
instance 1s to be validated. Like the SGML declaration it may be held in the form of compiled
tables within the SGML processor, or associated with it in some way which is invisible to the
user, or requires only that the name of the document type be specified before the document is
validated.

At its simplest the document type definition consists simply of a base document type definition
(possibly also one or more concurrent document type definitions) which is prefixed to the
document instance. For example:

<IDOCTYPE my.dtd [
<I-- all declarations for MY_.DTD go here -->

1=
<my.dtd>

This is an instance of a MY.DTD type document
</my.dtd>

12T his is so because the declarations in the DTD subset are read before those in the external DTD file, and the first
declaration of a given entity is the one which counts. This was described briefly in section 2.7 (‘SGML Entities *) on p. 29.

2.9.3 THE DOCUMENT INSTANCE

More usually, the document type definition will be held in a separate file and invoked by
reference, as follows:

<IDOCTYPE tei.2 system "tei2.dtd" [
1=
<tei.2>
This is an instance of an unmodified TEl type document
</tei.2>

Here, the text of the TEIL2 document type definition is not given explicitly, but the SGML
processor is told that it may be read from the file with the system identifier given in quotation
marks. The square brackets may still be supplied, as in this example, even though they enclose
nothing,

The part enclosed by square brackets 1s known as the document type declaration subset or “DTD
subset”. Its purpose is to specify any modification to be made to the DTD being invoked, thus:

<IDOCTYPE tei.2 SYSTEM "tei2.dtd" [
<IENTITY tla "Three Letter Acronym'>
<IELEMENT my.tag - - (#PCDATA)>
<I-- any other special-purpose declarations or
re-definitions go in here -->
1=
<tei.2>
This is an instance of a modified TEI.2 type document,
which may contain <my.tag>my special tags</my.tag> and
references to my usual entities such as &tla;.
</tei.2>

In this case, the document type definition in force includes first the contents of the DTD
subset, and then the contents of the file specified after the keyword SYSTEM. The order is
important, because in SGML only the first declaration of an entity counts. In the above example,
therefore, the declaration of the entity #a in the DTD subset would take precedence over any
declaration of the same entity in the file w2.dtd. It is perfectly legal SGML for entities to
be declared twice; this is the usual method for allowing user modification of SGML DTDs.
(Elements, by contrast, may not be declared more than once; if a declaration for <my.tag> were
contained in file tei.dtd, the SGML parser would signal an error.) Combining and extending the
TEI document type definitions is discussed further in chapter 3 (‘Structure of the TEI Document
Type Definition’) on p. 35.

2.9.3 The Document Instance

The document instance is the content of the document itself. It contains only text, markup and
general entity references, and thus may not contain any new declarations. A convenient way of
building up large documents in a modular fashion might be to use the DTD subset to declare
entities for the individual pieces or modules, thus:

<IDOCTYPE tei.2 [
<IENTITY chapl system "chapl.txt'>
<IENTITY chap2 system 'chap2.txt'>
<IENTITY chap3 "-- not yet written --"">
1=
<tei.2>
<teiHeader> ... </teiHeader>
<text>
<front> ... </front>
<body>
&chapl;
&chap2;
&chap3;

</body>
</text>

33

2.10 UsING SGML

34

</tei.2>

In this example, the DTD contained in file te:2.did has been extended by entity declarations
for each chapter of the work. The first two are system entities referring to the file in which the
text of particular chapters is to be found; the third a dummy, indicating that the text does not yet
exist (alternatively, an entity with a null value could be used). In the document instance, the entity
references &chapl; etc. will be resolved by the parser to give the required contents. The chapter
files themselves will not, of course, contain any element, attribute list, or entity declarations—just
tagged text.

2.10 Using SGML

A variety of software is available to assist in the tasks of creating, validating and processing SGML
documents. Only a few basic types can be described here. At the heart of most such software is an
SGML parser: that is, a piece of software which can take a document type definition and generate
from it a software system capable of validating any document invoking that DTD. Output from a
parser, at its simplest, 1s just “yes” (the document instance is valid) or “no” (it is not). Most parsers
will however also produce a new version of the document instance in canonical form (typically with
all end-tags supplied and entity references resolved) or formatted according to user specifications.
This form can then be used by other pieces of software (loosely or tightly coupled with the parser)
to provide additional functions, such as structured editing, formatting and database management.

A structured editor 1s a kind of intelligent word-processor. It can use information extracted from
a processed DTD to prompt the user with information about which elements are required at
different points in a document as the document is being created. It can also greatly simplify the
task of preparing a document, for example by inserting tags automatically.

A formatter operates on a tagged document instance to produce a printed form of it. Many
typographic distinctions, such as the use of particular typefaces or sizes, are intimately related to
structural distinctions, and formatters can thus usefully take advantage of descriptive markup. It
1s also possible to define the tagging structure expected by a formatting program in SGML terms,
as a concurrent document structure.

Text-oriented database management systems typically use inverted file indexes to point into
documents, or subdivisions of them. A search can be made for an occurrence of some word or
word pattern within a document or within a subdivision of one. Meaningful subdivisions of input
documents will of course be closely related to the subdivisions specified using descriptive markup.
It 1s thus simple for textual database systems to take advantage of SGML-tagged documents.
Much research work is also currently going into ways of extending the capabilities of existing
(non-text) database systems to take advantage of the structuring information made explicit by
SGML markup.

Hypertext systems improve on other methods of handling text by supporting associative links
within and across documents. Again, the basic building block needed for such systems is also
a basic building block of SGML markup: the ability to identify and to link together individual
document elements comes free as a part of the SGML way of doing things. By tagging links
explicitly, rather than using proprietary software, developers of hypertexts can be sure that the
resources they create will continue to be useful. To load an SGML document into a hypertext
system requires only a processor which can correctly interpret SGML tags such as those discussed
in chapter 14 (‘Linking, Segmentation, and Alignment’) on p. 331.

Chapter 3

Structure of the TEI Document
Type Definition

This chapter describes the overall structure of the encoding scheme defined by these Guidelines.
It introduces the conceptual framework within which the following chapters are to be understood,
and describes the technical means by which that conceptual framework is implemented in SGML.
It assumes some familiarity with SGML; see chapter 2 (‘A Gentle Introduction to SGML ’) on
p- 15.

The TEI encoding scheme consists of number of modules or DTD fragments which we refer
to below as tag sets. Selected tag sets may be combined in many different ways, according to
principles described in this chapter, within the framework of the TEI main DTD. Auxiliary tag
sets are also defined for specific purposes independent of the TEI main DTD.

The DTD fragments from which the main TEI DTD is constructed may be classified as
follows:

e core DTD fragments
e base DTD fragments
e additional DTD fragments

The first two sections of this chapter discuss these distinctions and list the specific tag sets
included in each category. Section 3.3 (‘Invocation of the TEI DTD’) on p. 39 describes how to
mvoke the TEI document type declaration, and how to specify which of the various base tag sets
and optional additional tag sets are used in a document.

The global attributes, characteristics postulated of every element or tag in the encoding scheme,
are defined in section 3.5 (‘Global Attributes’) on p. 42.

The remainder of the chapter contains a more technical description of the SGML mecha-
nisms used to implement the encoding scheme. It may be skipped at a first reading, but a proper
understanding of the topics addressed here is essential for anyone planning to modify or extend
the TEI encoding scheme in any way (see also chapter 29 (‘Modifying the TEI D'TD’) on p. 619),
and also highly desirable for those wishing to take full advantage of its modular nature. The
structure of the main TEI DTD file itself is outlined in section 3.6 (“The TEI2.DTD File’) on
p- 45. The element classes used to define smaller groups of elements and their characteristics are
described in section 3.7 (‘Element Classes’) on p. 51. Both global attributes and element classes
are implemented using SGML parameter entities; various other uses of parameter entities in the
TEI DTDs are discussed in section 3.8 (‘Other Parameter Entities in TEI DTDs’) on p. 65.

3.1 Main and Auxiliary DTDs

These Guidelines define a large number of SGML tags for marking up documents, all of which
are formally defined within the document type declaration (DTD) files provided by the TEI and
documented in the remainder of the present document. The tags are grouped into lag sels or

35

3.2 CORE, BASE, AND ADDITIONAL TAG SETS

36

DTD fragments, each comprising a set of declarations for tags which belong together in some
respect, typically related to their intended application area.

All tags used to transcribe documents are available for use within the main DTD of the TEI
and are defined in Parts IIT and IV of these Guidelines. There are DTD fragments for prose
and mixed matter, verse and verse collections, drama, dictionaries, analysis and interpretation
of text, text criticism, etc. A full list, including the files in which they are defined, and the rules
determining their selection and combination, is given in section 3.2 (‘Core, Base, and Additional
Tag Sets’) on p. 36.

A number of auxiliary DTDs are also defined in these Guidelines. These are used for the
encoding of ancillary descriptive information useful when processing electronic documents. Part
V of these Guidelines describes several such auxiliary document types, specifically:

independent header for use with sets of TEI headers regarded as documents in their own
right, for example by libraries or archives exchanging details of their holdings (see chapters 5
(‘The TEI Header’) on p. 77 and 24 (“The Independent Header’) on p. 559).

writing system declaration used to define and document character sets or transliteration
schemes (see chapters 4 (‘Characters and Character Sets’) on p. 71 and 25 (‘Writing System
Declaration’) on p. 571).

feature system declaration used to define and document sets of analytic features (see chap-
ters 16 (‘Feature Structures’) on p. 397 and 26 (‘Feature System Declaration’) on p. 589).

tag set declaration used to define and document descriptive documentation for TEI-conformant

tag sets (see chapter 27 (“I'ag Set Documentation’) on p. 601).

An independent header typically describes the encoding of a specific document, but in the
case of a planned corpus or collection, it may define a set of encoding practices common to
all texts in the collection. The other auxiliary document types provide information likely to be
relevant to many documents, rather than to individual documents.

When individual TEI documents are exchanged between sites, they should be accompanied
by whatever auxiliary documents apply to them. When larger groups of documents are ex-
changed, the relevant auxiliary documents need be exchanged only once. For further information
see chapter 30 (‘Rules for Interchange °) on p. 627.

The DTD files containing these auxiliary DTDs are:
teishd2.dtd independent header
tetwsd?2.dtd writing system declaration
teifsd2.dtd feature system declaration
teitsd2.dtd tag set declaration

Some of these auxiliary DTDs also make use of the core tag set defined as part of the main
TEI DTD; this is described in the relevant chapters of part V.

3.2 Core, Base, and Additional Tag Sets

The main TEI DTD is constructed by selecting an appropriate combination of smaller tag sets,
each containing some set of tags likely to be used together. These building blocks include:

core tag sets standard components of the TEI main DTD in all its forms; these are always
included without any special action by the encoder;

base tag sets basic building blocks for specific text types; exactly one base must be selected by
the encoder (unless one of the “combined” bases is used);

additional tag sets extra tags useful for particular purposes. All additional tag sets are
compatible with all bases and with each other; an encoder may therefore add them to the
selected base in any combination desired.

Each tag set is contained in one or more system files, which are defined by appropriate SGML
parameter entity declarations and invoked as a unit by appropriate SGML parameter entity references.

YA parameter entity is an SGML entity used only in markup declarations; references to parameter entities are delimited
by a percent sign and a semicolon rather than the ampersand and colon used for general entity references. The entity

3.2.1

THE CORE TAG SETS

Several such declarations may be needed to invoke all parts of a given tag set, since as well
as defining elements or attributes, a tag set may (for example) add new items to the set of global
attributes or add classes to the system of element classes. Consistent naming principles are applied
throughout the TEI scheme for these and other entities. Thus, assuming a tag set named xxx, the
following parameter entities may be encountered:

TEILxxx used to enable or disable tag set xxx; must have the value INCLUDE (tag set is enabled)
or, by default, IGNORE (tag set not enabled).

TEILxxx.ent refers to a system file containing any parameter entity declarations unique to tag
set xxx.

TEILxxx.dtd refers to a system file containing the element and attribute list declarations for
tag set xxx.

a.xxx contains definitions of attributes which are to be added to the set of global attributes
when tag set xxx is enabled.

m.comp.xxx if xxx is a base tag set, this contains a list of any component-level elements unique
to it (for a definition of component-level elements, see section 3.7 (‘Element Classes’) on p. 51).

mix.xxx aspecial entity for use in defining the set of component-level elements when the mixed
base tag set is in use.

gen.xxx a special entity for use in defining the set of component-level elements when the
general base tag set 1s in use.

Few tag sets declare all of these entities; only those actually used are declared.

The interpretation of the parameter entity declarations, and the inclusion of the appropriate
tag sets, are handled by a single “driver file” for the main TEI D'TD. This file, t:2.dtd, is described
in detail below in section 3.6 (‘The TEI2.DTD File’) on p. 45. The remainder of the present
section identifies the files in which each tag set is contained, and the parameter entities associated
with them.

3.2.1 The Core Tag Sets

Two “core” tag sets are always included in every invocation of the main TEI DTD. The tags and
attributes that they contain are therefore available to any TEI document. The parameter entities
used for this purpose, and the files they refer to, are:

TEI.core.dtd refers to the file feicore2.dtd, which declares the core tags defined in chapter 6
(‘Elements Available in All TEI Documents’) on p. 119

TEI.header.dtd refers to the file tethdr2.dtd, which declares the tags of the TEI header defined
in chapter 5 (“The TEI Header’) on p. 77

Together with these tag sets, part II also documents a tag set for default text structure and
front and back matter. This tag set is embedded by the base tag set selected, and may vary with
the base; it is therefore described in the next section.

3.2.2 The Base Tag Sets

The base tag sets are those which define the basic building blocks of different text types. The
basic structures of verse (line, stanza, canto, etc.), for example, are not those of prose (paragraph,
section, chapter, etc.), while dictionaries use yet another set of basic structures. Each base
corresponds to one chapter of Part IIT of this document.

In general, exactly one base tag set must be selected for any TEI-conformant document.
Errors will result if none, or more than one, is selected, because the same elements may be
differently defined in different base tag sets. For documents which mingle structurally dissimilar
elements and require elements from more than one base, however, either the mixed base or the
general base may be used; see section 3.4 (‘Combining TEI Base Tag Sets’) on p. 40. These bases
require the encoder to specify which of the other bases are to be combined.

TEIcore.ent, for example, would be referred to using the string %TEI .core.ent;. Parameter entities can also be used
to control the inclusion or exclusion of marked sections of the document or DTD; the TEI DTD uses marked sections to
handle the selection of different base and additional tag sets.

37

3.2 CORE, BASE, AND ADDITIONAL TAG SETS

38

The encoder selects a base tag set by declaring the appropriate SGML parameter entity with
the replacement text INCLUDE. To invoke the base tag set for prose, for example, the encoder
must ensure that the DTD subset in the document contains the declaration:

<IENTITY % TEIl.prose ~INCLUDE”> >

The entities used to select the different base tag sets, and the files containing the SGML
declarations for each base, are listed below.

TEl.prose sclects the base tag set for prose, contained in teipros2.did.

TEl. verse sclects the base tag set for verse, contained in ftewers2.dtd and teiers2.ent.

TEl.drama sclects the base tag set for drama, contained in leidram?2.did and teidram?2.ent.

TEl spoken sclects the base tag set for transcriptions of spoken texts, contained in leispok2.dtd
and teispok2.ent.

TEl.dictionaries selects the base tag set for print dictionaries, contained in fteidict?.dtd and
leidict2.ent.

TEI.terminology sclects the base tag set for terminological data files, contained in teiterm2.dtd,
letterm2.ent, lette2n.did, and leite2fent.

TEl.general sclects the generic mixed-mode base base tag set, contained in teigen2.dtd.

TEI.mixed selects the base tag set for free mixed-mode texts, contained in tezmix2.dtd.

As shown in the list, each base tag set is normally contained in one or two system files: a
required one (with the extension ‘dtd’) defining the elements in the tag set and their attributes,
and an optional one (with the file extension ‘ent’) defining any global attributes or specialized
element classes enabled by that tag set. The parameter entities for these files have the same name
as the enabling parameter entity for the base, with the suffixes ‘ent’ and ‘dtd’ respectively: the
prose base, for example, is enabled by declaring the parameter entity 7EI prose as INCLUDE; this
in turn enables declarations of TELprose.ent and TELprose.did as the system files teipros2.ent and
teipros2.did. For further details, see section 3.6 ("The TEI2.DTD File’) on p. 45.

Most base tag sets (but not necessarily all) embed common definitions of text structure, front
matter, and back matter, by referring to three standard parameter entities; these are:

TEL structure.dtd refers to the file teistr2.dtd, with default definitions for <text>, <div>, etc.
TEI front.dtd refers to the file teifron2.dtd, with tags for front matter
TEI back.dtd refers to the file teiback?.dtd, with tags for back matter

These default-structure tags are documented in chapter 7 (‘Default Text Structure’) on p. 183.

3.2.3 The Additional Tag Sets

The additional tag sets define optional tags required by different encoders for different types of
analysis and processing; each corresponds to a chapter in part IV of this document. In any TEI
encoding, any or all of these additional tag sets may be made available, as they are all compatible
with each other and with every base tag set. They are invoked in the same way as base tag sets,
by defining the appropriate parameter entity as INCLUDE; the relevant parameter entities, and
the files containing the additional tag sets, are these:

TEI linking embeds the files tetlink2.dtd and teilink2.ent, with tags for linking, segmentation, and
alignment (chapter 14 (‘Linking, Segmentation, and Alignment’) on p. 331)

TEI.analysis embeds the files teiana2.did and teiana2.ent, with tags for simple analytic mecha-
nisms (chapter 15 (‘Simple Analytic Mechanisms’) on p. 381)

TEIL fs embeds the file teifs2.did, with tags for feature structure analysis (chapter 16 (‘Feature
Structures’) on p. 397)

TEl.certainty embeds the file teicert2.dtd, with tags for indicating uncertainty and probability
in the markup (chapter 17 (‘Certainty and Responsibility’) on p. 435)

TEl transcr embeds the files teitran2.dtd and teitran2.ent, with tags for manuscripts, analytic
bibliography, and transcription of primary sources (chapter 18 (“Transcription of Primary
Sources’) on p. 443)

TEl textcrit cmbeds the files teitc2.did and teite2.ent, with tags for critical editions (chapter 19
(‘Critical Apparatus’) on p. 467)

3.2.4 USER-DEFINED TAG SETS

TEl.names.dates embeds the files teind?.dtd and teind?2.ent, with specialized tags for names and
dates (chapter 20 (‘Names and Dates’) on p. 487)

TEl. nets embeds the file tenet2.dtd, with tags for graphs, digraphs, trees, and other networks
(chapter 21 (‘Graphs, Networks, and Trees’) on p. 505) — not to be confused with the graphics
markup of TELfigures

TEI figures embeds the files leifig2.dld and leifig2.ent, with tags for graphics, figures, illustrations,
tables, and formulae (chapter 22 (“Tables, Formulae, and Graphics’) on p. 523) — not to be
confused with the graph-theoretic markup of TELnets

TEI.corpus embeds the file tewcorp2.dtd, with tags for additional tags for language corpora
(chapter 23 (‘Language Corpora’) on p. 537)

Like the base tag sets, the additional tag sets are each contained in one or two system files: a
required one (with the file extension ‘dtd’) defining the elements in the tag set and their attributes,
and an optional one (with the file extension ‘ent’) defining any global attributes or specialized
element classes enabled by that tag set. The parameter entities for these files have the same name
as the enabling parameter entity for the tag set, with the suffixes ‘ent” and ‘dtd’ respectively: the
additional tag set for linking, segmentation, and alignment, for example, is enabled by declaring
the parameter entity 7ELlinking as INCLUDE; this in turn enables declarations of TEL linking.ent
and TELlinking.dtd as the system files teilink2.ent and teilink2.dtd.

3.2.4 User-Defined Tag Sets

As described in chapter 29 (‘Modifying the TEI DTD’) on p. 619, users may modify the markup
language defined here by renaming elements, suppressing elements, adding new elements, or
modifying element or attribute-list declarations. In general, local modifications will be most
conveniently grouped into two files: one containing the local modifications to parameter entities
used in the D'TDs, and the other containing new or modified declarations of elements and their
attributes. These files will be embedded in the TEI DTD if they are associated with the following
two parameter entities:

TEl.extensions.ent local modifications to parameter entities
TEl. extensions.dtd declarations of new elements and modified declarations for existing ele-
ments

In some cases, users may wish to provide completely new base or additional tag sets, to be
invoked in the same way as those defined in this document; such tag sets should also be divided
into “entity files” and “DTD files” in the same way as the standard tag sets. Such modifications
should be undertaken only with a thorough understanding of the interface among core, base, and
additional tag sets as documented in the final sections of this chapter; see in particular section
3.6.2 (‘Embedding Local Modifications’) on p. 47.

Further recommendations for the creation of user-defined extension or modification are
provided in chapters 29 (‘Modifying the TEI DTD’) on p. 619 and 28 (‘Conformance’) on p. 611.

3.3 Invocation of the TEI DTD

Like any other SGML document, a TEI document must begin with a document type definition
(DTD). Local systems may allow the DTD to be implicit, but for interchange purposes it must be
explicit. Because of its highly modular nature, it may in any case be desirable for the component
parts of the TEI DTD to be made explicit even for local processing:

The simplest version of the TEI DTD names the main TEI D'TD file as an external file, and
specifies a single base tag set for use in the document, using the parameter entity names specified
in section 3.2 (‘Core, Base, and Additional Tag Sets’) on p. 36. For example, a document using
the base tag set for prose will begin with a document type declaration something like this:

<IDOCTYPE TEIl.2 system “tei2.dtd” [
<IENTITY % TEl.prose ~INCLUDE”> >
1>

39

3.4 COMBINING TEI BASE TAG SETS

40

A document using the base tag set for drama will define a different parameter entity:

<IDOCTYPE TEIl.2 system “tei2.dtd” [
<IENTITY % TEIl.drama ~INCLUDE”> >

1>
If one or more of the additional tag sets described in Part IV are to be used, they are invoked in
the same way as the base tag set. A document using the base tag set for prose, with the additional
tag sets for text criticism and for linking, segmentation, and alignment, for example, will begin
with a document type declaration something like this:

<IDOCTYPE TEIl.2 system “tei2.dtd” [
<!-- TEIl base tag set specified here: ... -->
<IENTITY % TEl.prose “INCLUDE” >

<!-- TEIl additional tag sets optionally specified here: ... -->
<IENTITY % TEIl.textcrit ”INCLUDE” >
<IENTITY % TEI.linking ”INCLUDE” >

1>
If local modifications are used, they may be stored in separate files and pointed to using the

parameter entities TELextensions.ent and TELextensions.dtd. If such local modifications are added to
the example just given, this is the result:

<IDOCTYPE TEIl.2 system “tei2.dtd” [

<I-- Local modifications to the TEI DTD declared here. They
will be embedded at an appropriate point in the main
DTD. ... -->
<IENTITY % TEl.extensions.ent system “project.ent” >
<IENTITY % TEl.extensions.dtd system ’project.dtd” >

<!-- TEl base tag set specified here: ... -->
<IENTITY % TEl.prose “INCLUDE” >

<!-- TEl additional tag sets specified here: ... -->
<IENTITY % TEIl.textcrit ~INCLUDE” >
<IENTITY % TEI.linking ”INCLUDE” >
1>
If the document requires tags which are defined in different base tag sets (e.g. prose and
drama) or embeds smaller texts which use different base tag sets, then one of the mixed-type
bases must be used. Their proper invocation is described below in section 3.4 (‘Combining TEI
Base Tag Sets’) on p. 40.

3.4 Combining TEI Base Tag Sets

The TEI DTD has been designed to simplify the task of choosing an appropriate set of tags
for the text in hand. The core tag set includes tags appropriate to the majority of simple tagging
requirements for prose, verse and drama, irrespective of the base tag set chosen. For more detailed
tagging, the encoder may choose the prose base for prose texts, the verse base for verse, and so
on.

In discussing these base tag sets elsewhere in these Guidelines, it is generally assumed for
clarity of exposition that a text will fall into one, not several, of these types. It is not uncommon,
however, for a text to combine prose and verse, or other forms treated by the TEI as different
bases. Examples include:

o when the text is a collection of other texts, which do not all use the same base: e.g. an anthology
of prose, verse, and drama

e when the text contains other smaller, embedded texts: e.g. a poem or song included in a prose
narrative

e when some sections of the text are written in one form, and others in a different form: e.g
a novel where some chapters are in prose, others take the form of dictionary entries and still
others the form of scenes in a play

e when the text moves back and forth among forms not between sections but within a single
section: e.g. mixed prose-and-verse forms like many pastorals or like some portions of the
Poetic Edda

The TEI DTD provides the following mechanisms to handle these cases:

o a definition of a corpus or collection as a series of <tei.2> documents, sharing a common TEI
header (see chapter 23 (‘Language Corpora’) on p. 537)

o a definition of composite texts which comprise front matter, a group or several possibly nested
groups of collected texts, themselves possibly composite (see section 7.3 (‘Groups of Texts’) on
p. 195)

e anotion of embedded text which allows one text to be embedded within another (that is, <text>
1s defined as a component-level element, as described briefly at the conclusion of section 7.3
(‘Groups of Texts’) on p. 195)

Whichever mechanism is adopted, if the whole of the resulting document is to be parseable
by the main TEI DTD it may need to combine elements from different TEI base tag sets. Two
special-purpose base tag sets are defined for this purpose:

o the general base, which allows different sections of a text to use different bases, but ensures that
each section uses only one base

o the muxed base, which allows chunk- and inter-level elements from any base to mix within any
text division

When either of these “combined” bases is used, the user must specify all of the other bases to
be included in the mix as well as either the general or the mixed base. This is the only exception
to the general rule that no more than one base tag set may be enabled in a TEI document. The
following set of declarations for example allows for any mixture of the low level structural tags
defined in the prose, drama and dictionary base tag sets:

<IDOCTYPE TEIl.2 system “tei.2” [
<IENTITY % TEl.mixed ”INCLUDE” >
<IENTITY % TEl.prose ”INCLUDE> >
<IENTITY % TEIl.drama ”INCLUDE” >
<IENTITY % TEIl.dictionaries ”INCLUDE” >
<I-- Structurally, Moby Dick is not your
everyday common or garden variety novel ... -->
1>
The following set of declarations has the same effect, but with the additional restriction that
each text division (i.e. each member of the element class din) must be homogenous with respect
to the mixture of available bases. Because in a “general” base, each <div> of the text may use a
different base, the divisions of the text prefixed by this set of declarations will each be composed
of elements taken solely from one of the prose, verse or dictionary base tag sets:

<IDOCTYPE TEIl.2 system “tei.2” [
<IENTITY % TEl.general “INCLUDE” >
<IENTITY % TEl.prose ~INCLUDE~> >
<IENTITY % TEIl.drama ”INCLUDE”> >
<IENTITY % TEl.dictionaries ”INCLUDE” >

1>

The actual DTD fragments for the combined bases do nothing but embed the default tag set
for overall text structure. The mixed-base tag set is in file teimix2.dtd:

<I-- 3.4: Mixed-Base Tag Set -—>
<I-- Text Encoding Initiative: Guidelines for Electronic -—>
<I-- Text Encoding and Interchange. Document TEI P3, 1994. -—>
<I-- Copyright (c) 1994 ACH, ACL, ALLC. Permission to copy -—>
<I-- in any form is granted, provided this notice is -—>

41

3.5 GLOBAL ATTRIBUTES

42

<I-- included in all copies. -—>
<I-- These materials may not be altered; modifications to —-—>
<I-- these DTDs should be performed as specified in the -—>
<I-- Guidelines in chapter "Modifying the TEl DTD." -—>
<I-- These materials subject to revision. Current versions -—>
<I-- are available from the Text Encoding Initiative. -—>
<IENTITY % TEl.structure.dtd system ’teistr2.dtd” >

%TEI .structure.dtd;

The general-base tag set is in file leigen2.dtd:

<I-- 3.4: CGeneral-Base Tag Set -——>
<I-- Text Encoding Initiative: Guidelines for Electronic -—>
<I-- Text Encoding and Interchange. Document TEl P3, 1994. -—>
<I-- Copyright (c) 1994 ACH, ACL, ALLC. Permission to copy -—>
<I-- in any form is granted, provided this notice is -—>
<I-- included in all copies. -—>
<I-- These materials may not be altered; modifications to -—>
<I-- these DTDs should be performed as specified in the -—>
<I-- Guidelines in chapter "Modifying the TElI DTD." -—>
<I-- These materials subject to revision. Current versions -—>
<I-- are available from the Text Encoding Initiative. -—>
<IENTITY % TEl.structure.dtd system ’teistr2.dtd” >

%TEI .structure.dtd;

3.5 Global Attributes

The following attributes are defined for every TEI element.?

id provides a unique identifier for the element bearing the ID value.

N gives a number (or other label) for an element, which is not necessarily unique within the
document.

lang indicates the language of the element content, usually using a two- or three-letter code

from ISO 639.
rend indicates how the element in question was rendered or presented in the source text.

Some tag sets (e.g. those for terminology, linking, and analysis) define other global attributes;
these are documented in the appropriate chapters of Part IIT and Part IV. See also section 3.7.1
(‘Classes Which Share Attributes’) on p. 52.

An additional attribute, TEIform, is also defined for every TEI element. Unlike the other
attributes defined for every element, TEIform is not defined by class global because its default
value is different in every case and must be defined individually for each element.®

TEIform indicates the standard TEI name (generic identifier) for a given element.

Any TEI element may be given values for id, n, lang, rend, or TEIform, simply by specifying
values for these attributes. The following two examples convey the same information about the
text: that the material transcribed occurs within a <p> element (paragraph). They differ only in
that the second provides an identifier for the paragraph, to which other elements (e.g. notes or
hypertext links) can conveniently refer.

2More exactly, these are the attributes of the element class global, to which all elements belong; for further discussion of
attribute classes and ways in which attributes may be inherited and over-ridden, see section 3.7.1 (‘Classes Which Share
Attributes’) on p. 52.

3A dummy element class TEIform is defined in the reference section, solely for documentary purposes.

<p>If to do were as easy as to know what were

good to do, chapels had been churches and poor men’s cottages
princes’ palaces. It is a good divine that follows his own
instructions ...</p>

<p 1d="MV1.2.5°>IFf to do were as easy as to know what were
good to do, chapels had been churches and poor men’s cottages
princes’ palaces. It is a good divine that follows his own
instructions ...</p>

ID values must be legal SGML names; by default, this means they must begin with a letter
from A to Z or a to z and contain no characters other than the letters A to Z or a to z, the digits 0
to 9, the full stop, and the hyphen. Furthermore, by default upper and lower case letters are not
distinguished: thus, the strings ‘a23’ and ‘A23’ are identical, and may not be used to identify two
distinct elements.

If two elements are given the same identifier, the SGML parser will signal a syntax error. The
following example, therefore, is not valid:

<p id=pagel><qg>What’s it going to be then, eh?</qg></p>

<p id=pagel>There was me, that is Alex, and my three droogs,

that is Pete, Georgie, and Dim, ... </p>

For a discussion of methods of providing unique identifiers for elements, see section 6.9.2
(‘Creating New Reference Systems’) on p. 157.

The n attribute allows identifying information (e.g. chapter numbers, etc.) to be encoded
even if it would not be a legal id value. Its value may be any string of characters; typically it is a
number or other similar enumerator or label. For example, the numbers given to the items of a
numbered list may be recorded with the n attribute; this would make it possible to record errors
in the numeration of the original, as in this list of chapters, transcribed from a faulty original in
which the number 10 is used twice, and 11 is omitted:

<list type=ordered>

<item n=1>About These Guidelines

<item n=2>A Gentle Introduction to SGML
<l—— __. -=>

<item n=9>Verse

<item n=10>Drama

<item n=10>Spoken Materials

<l-- sic: original has 10 twice! -->
<item n=12>Printed Dictionaries

<l——- __. -=>

</list>

The n attribute may also be used to record non-unique names associated with elements in a
text, possibly together with a unique identifier as in the following examples:

<div type=chap n="0One” id="TXT0101”>
<stanza n="xli1i’>

The lang attribute indicates the language, writing system, and character set associated with
a given element and all its contents. If it is not specified, the value is inherited from that of the
immediately enclosing element. As a rule, therefore, it is simplest to s